Примечание. Это часть урока с задачами по геометрии (раздел стереометрия). Если Вам необходимо решить задачу по геометрии, которой здесь нет — пишите об этом в форуме. В задачах вместо символа «квадратный корень» применяется функция sqrt(), в которой sqrt — символ квадратного корня, а в скобках указано подкоренное выражение.
- Задача. Призма, вписанная в цилиндр
- Задача. В цилиндр вписана правильная шестиугольная призма
- В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого раве…
- В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник катет которого равен 2а, а прилежащий угол
- В цилиндр вписана призма катет которого равен 2а
- В цилиндр вписана призма катет которого равен 2а
- Задача. Призма, вписанная в цилиндр
- Задача. В цилиндр вписана правильная шестиугольная призма
- В цилиндр вписана призма катет которого равен 2а
- 📹 Видео
Видео:11 класс. Контрольная №4 (из 6). Тема: Объем призмы, цилиндра и конуса. Решение с советами! :)Скачать
Задача. Призма, вписанная в цилиндр
В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол равен 60 градусам. Диагональ большей боковой грани призмы составляет с плоскостью ее основания угол в 45 градусов. Найдите объем цилиндра.
Решение .
Объем цилиндра найдем по формуле:
где:
R — радиус основания прямого цилиндра,
h — высота.
Найдем основание цилиндра. 1-й способ .
Основание цилиндра одновременно является окружностью, описанной вокруг прямоугольного треугольника, являющегося основанием призмы. Диаметр окружности, описанной вокруг прямоугольного треугольника, лежит на его гипотенузе. То есть длина гипотенузы равна 2R.
Радиус окружности, описанной вокруг треугольника найдем по формуле:
R = x / 2 sin α
где:
x — сторона треугольника
α — угол, противолежащий стороне а.
Противолежащий угол найдем следующим образом. Поскольку треугольник прямоугольный, то противолежащий катету угол будет равен 180-90-60 = 30 градусов. Таким образом, радиус описанной окружности (он же радиус цилиндра) равен:
Найдем основание цилиндра. 2-й способ
У прямоугольного треугольника гипотенуза одновременно является диаметром описанной окружности. Половина гипотенузы будет равна ее радиусу.
Таким образом найдем гипотенузу для прямоугольного треугольника, зная угол и его катет через тригонометрическую функцию:
2R = 2a / cos 60 = 2a / 0.5 = 4a
R = 2a
Найдем высоту цилиндра .
Диаметр описанной окружности образует с диагональю призмы прямоугольный треугольник, один катет которого является диаметром описанной окружности, второй — высотой цилиндра и призмы, а гипотенуза является диагональю большей стороны призмы и одновременно цилиндра.
Поскольку угол диагонали с основанием составляет 45 градусов, то второй угол равен 180 — 45 — 90 = 45 градусов.
Исходя из того, что прямоугольный треугольник равнобедренный, то высота цилиндра и призмы равна диаметру окружности. Таким образом:
V = пR 2 h
V = п*4a 2 *4a
V = п16a 3 .
Видео:ЕГЭ 2022 математика задача 4 вариант 2Скачать
Задача. В цилиндр вписана правильная шестиугольная призма
В цилиндр вписана правильная шестиугольная призма. Найти угол между диагональю ее боковой грани и осью цилиндра, если радиус основания равен высоте цилиндра.
Если радиус основания равен высоте цилиндра, диагональ боковой грани правильной шестиугольной призмы представляет собой прямоугольный треугольник, у которого один из катетов равен высоте цилиндра (r), а второй катет равен стороне шестиугольника, вписанного в окружность.Согласно свойствам шестиугольника, вписанного в окружность, его сторона равна радиусу такой окружности.
То есть, каждая боковая грань данной вписанной призмы – квадрат. Диагональ грани образует с осью цилиндра, как и с боковым ребром, одинаковый угол 45°, так как ось цилиндра и боковые ребра вписанной призмы параллельны.
Видео:Призма и цилиндр. Практическая часть. 11 класс.Скачать
В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого раве…
В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2, а прилежащий угол равен 30°. Диагональ большей боковой грани призмы составляет с плоскостью ее основания угол в 45°. Найдите объем цилиндра.
Чертеж к задаче во вложении.
∆ АВС — прямоугольный, ∠С=90°, ∠А=30°. Следовательно, гипотенуза АВ является диаметром описанной окружности (основания цилиндра) и АВ=2ВС. По теореме Пифагора
Рассмотрим прямоугольный ∆ ВАА’. У него по условию ∠B=45°, следовательно ∠А’=90°-45°=45°. Поэтому ∆ ВАА’ — равнобедренный с основанием BА’. Значит,
Основанием вписанной в цилиндр призмы служит прямоугольный треугольник. Он вписан в круг — основание цилиндра.
Гипотенуза вписанного прямоугольного треугольника — диаметр окружности, в которую он вписан.
Диаметр АВ =ВС: cos( 30°)
АВ=2:(√3 : 2)=4:√3=4:√3
По условию диагональ большей боковой грани призмы составляет с плоскостью ее основания угол в 45°.
Большая боковая грань призмы имеет основанием большую сторону основания — гипотенузу АВ.
Отсюда высота АЕ цилиндра, как катет ЕА равнобедренного прямоугольного треугольника ЕАВ равна АВ и равна 4:√3
V=πr²H
r=0,5*4:√3 =2:√3
V=π(2:√3 )²(4:√3)=π4*4: 3√3=16π√3:3*3=16π√3):9
Видео:Учимся дома. 11 класс. Геометрия: Решение задач на объемыСкачать
В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник катет которого равен 2а, а прилежащий угол
Решение.
Объем цилиндра найдем по формуле:
V = пR2h
где:
R — радиус основания прямого цилиндра,
h — высота.
Найдем основание цилиндра. 1-й способ.
Основание цилиндра одновременно является окружностью, описанной вокруг прямоугольного треугольника, являющегося основанием призмы. Радиус окружности, описанной вокруг треугольника найдем по формуле:
R = a / 2 sin α
где:
a — сторона треугольника
α — угол, противолежащий стороне а.
Противолежащий угол найдем следующим образом. Поскольку треугольник прямоугольный, то противолежащий катету угол будет равен 180-90-60 = 30 градусов. Таким образом, радиус описанной окружности (он же радиус цилиндра) равен:
Найдем основание цилиндра. 2-й способ
У прямоугольного треугольника гипотенуза одновременно является диаметром описанной окружности. Половина гипотенузы будет равна ее радиусу.
Таким образом найдем гипотенузу для прямоугольного треугольника, зная угол и его катет через тригонометрическую функцию:
2R = 2a / cos 60 = 2a / 0.5 = 4a
R = 2a
Найдем высоту цилиндра.
Диаметр описанной окружности образует с диагональю призмы прямоугольный треугольник, один катет которого является диаметром описанной окружности, второй — высотой цилиндра и призмы, а гипотенуза является диагональю большей стороны призмы и одновременно цилиндра.
Поскольку угол диагонали с основанием составляет 45 градусов, то второй угол равен 180 — 45 — 90 = 45 градусов.
Исходя из того, что прямоугольный треугольник равнобедренный, то высота цилиндра и призмы равна диаметру окружности. Таким образом:
V = пR2h
V = п*4a2*4a
V = п16a3.
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
В цилиндр вписана призма катет которого равен 2а
В цилиндр вписана призма, основанием призмы служит прямоугольный треугольник, катет которого равен 2а. Прилежащий угол равен 30 градусов, диагональ боковой грани призмы составляет с плоскостью ее основания угол 45 градусов. Найти объем цилиндра.
Цетр окружности в которую вписан прямоугольный треугольник лежит на середине гипотенузы. Тогда АС/2R= cos 30. Где АС=2а. Отсюда R=2а/корень из 3. Угол диагонали 45 значит высота призмы и соответственно цилиндра равна стороне основания (в равнобедренном треугольнике)=2а. Объём цилиндра V=π*(4а²/3)*2а = π* 8а³/3 . Кстати нужно уточнить к какой грани относится диагональ. Здесь дан расчёт для 2а.
Если в конструкции, — то для увеличения прочности (Обрати вниание: большинство мостов, башен и вышек- ИЗ «ТРЕУГОЛЬНИКОВ» собраны)
Так как дана правильная призма, то в основании лежит равносторонний треугольник, а боковые грани — прямоугольники. Боковой кант равен высоте призмы. Рассматривая боковую грань, с теоремы Пифагора находишь боковой кант. Далее применяешь формулы. S(боковое)=P(переметр основания)*h. S(полное)=S(боковое)+2S(основания). И так как в основе равносторонний треугольник, то его S=(сторона умножить на корень из 3)/4. Вот краткое решение.
Видео:Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать
В цилиндр вписана призма катет которого равен 2а
Примечание. Это часть урока с задачами по геометрии (раздел стереометрия). Если Вам необходимо решить задачу по геометрии, которой здесь нет — пишите об этом в форуме. В задачах вместо символа «квадратный корень» применяется функция sqrt(), в которой sqrt — символ квадратного корня, а в скобках указано подкоренное выражение.
Видео:ОГЭ по математике. Вторая часть - 21-е заданияСкачать
Задача. Призма, вписанная в цилиндр
В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол равен 60 градусам. Диагональ большей боковой грани призмы составляет с плоскостью ее основания угол в 45 градусов. Найдите объем цилиндра.
Решение .
Объем цилиндра найдем по формуле:
где:
R — радиус основания прямого цилиндра,
h — высота.
Найдем основание цилиндра. 1-й способ .
Основание цилиндра одновременно является окружностью, описанной вокруг прямоугольного треугольника, являющегося основанием призмы. Диаметр окружности, описанной вокруг прямоугольного треугольника, лежит на его гипотенузе. То есть длина гипотенузы равна 2R.
Радиус окружности, описанной вокруг треугольника найдем по формуле:
R = x / 2 sin α
где:
x — сторона треугольника
α — угол, противолежащий стороне а.
Противолежащий угол найдем следующим образом. Поскольку треугольник прямоугольный, то противолежащий катету угол будет равен 180-90-60 = 30 градусов. Таким образом, радиус описанной окружности (он же радиус цилиндра) равен:
Найдем основание цилиндра. 2-й способ
У прямоугольного треугольника гипотенуза одновременно является диаметром описанной окружности. Половина гипотенузы будет равна ее радиусу.
Таким образом найдем гипотенузу для прямоугольного треугольника, зная угол и его катет через тригонометрическую функцию:
2R = 2a / cos 60 = 2a / 0.5 = 4a
R = 2a
Найдем высоту цилиндра .
Диаметр описанной окружности образует с диагональю призмы прямоугольный треугольник, один катет которого является диаметром описанной окружности, второй — высотой цилиндра и призмы, а гипотенуза является диагональю большей стороны призмы и одновременно цилиндра.
Поскольку угол диагонали с основанием составляет 45 градусов, то второй угол равен 180 — 45 — 90 = 45 градусов.
Исходя из того, что прямоугольный треугольник равнобедренный, то высота цилиндра и призмы равна диаметру окружности. Таким образом:
V = пR 2 h
V = п*4a 2 *4a
V = п16a 3 .
Видео:Видеоурок по математике "Цилиндр"Скачать
Задача. В цилиндр вписана правильная шестиугольная призма
В цилиндр вписана правильная шестиугольная призма. Найти угол между диагональю ее боковой грани и осью цилиндра, если радиус основания равен высоте цилиндра.
Если радиус основания равен высоте цилиндра, диагональ боковой грани правильной шестиугольной призмы представляет собой прямоугольный треугольник, у которого один из катетов равен высоте цилиндра (r), а второй катет равен стороне шестиугольника, вписанного в окружность.Согласно свойствам шестиугольника, вписанного в окружность, его сторона равна радиусу такой окружности.
То есть, каждая боковая грань данной вписанной призмы – квадрат. Диагональ грани образует с осью цилиндра, как и с боковым ребром, одинаковый угол 45°, так как ось цилиндра и боковые ребра вписанной призмы параллельны.
Видео:Вступительная в ВУЗ (Академия ФСО). Вариант 1. 2022г. В конце 2-ой вариант. Пробуем свои силы!Скачать
В цилиндр вписана призма катет которого равен 2а
в цилиндр вписана призма. основанием призмы служит прямоугольный треугольник катет которого = 2а , а прилежащий угол = 60 градусов. Диагональ большей боковой грани призмы составляет с плоскостью его основания угол=45 градусов. найдите объём цилиндра
В цилиндр вписана призма.
Основанием призмы служит прямоугольный треугольник,
катет которого = 2а , а прилежащий угол = 60 градусов.
Диагональ большей боковой грани призмы составляет с плоскостью его основания угол=45 градусов.
Найдите объём цилиндра.
Объем цилиндра равен произведению высоты на площадь его основания.
V=SH
Обратим внмание на то, что в основании призмы лежит прямоугольный треугольник АВС c прямым углом С, катет ВС которого прилежит к углу 60°, следовательно, противолежит углу 30°, и потому гипотенуза АВ этого треугольника равна двум таким катетам.
Гипотенуза прямоугольного треугольника — диаметр описанной около него окружности.
АВ=2*2а=4а
R=4а:2=2а
Большая боковая грань — грань, горизонтальными сторонами которой служат диаметры оснований, т.е. грань АВКН.
Т.к. диагональ АК большей грани с плоскостью основания составляет угол 45°, треугольник АКВ — прямоугольный равнобедренный, АВ=ВК , высота цилиндра ВК равна диаметру основания и равна 4а.
V=SH=πr²Н=π*4а²*4а=16πа³
📹 Видео
ЕГЭ-2021: Объём отсечённой призмы | Задание 8: СтереометрияСкачать
Призма и пирамида. Площадь и объем. Вебинар | Математика 10 классСкачать
Задача 6 №27624 ЕГЭ по математике. Урок 71Скачать
11 класс, 34 урок, Объем наклонной призмыСкачать
ОГЭ по математике. Вторая часть - 21-е заданияСкачать
11 класс, 31 урок, Объем прямой призмыСкачать
Профильный ЕГЭ 2024. Вся стереометрия первой части. Задача 3. МиниСИРОПСкачать
ОГЭ по математике. Вторая часть - 21-е заданияСкачать
Геометрия 11 класс: Объем призмы и цилиндра. ВидеоурокСкачать
Цилиндр, конус и шар в задании 2 | Математика ЕГЭ 2023 | УмскулСкачать