Величина напряженности электрического поля цилиндра

Авто помощник

Величина напряженности электрического поля цилиндра

Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах.

Поле бесконечной однородно заряженной плоскости

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Видео:Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.

Очевидно, что в симметричных, относительно плоскости точках, напряженность будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).

Величина напряженности электрического поля цилиндра
Рис. 2.11Рис. 2.12

Применим теорему Остроградского-Гаусса. Поток ФЕ через боковую часть поверхности цилиндра равен нулю, т.к . Дляоснования цилиндра

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

Внутри поверхности заключен заряд . Следовательно, из теоремы Остроградского–Гаусса получим:

откуда видно, что напряженность поля плоскости S равна:

Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости

Поле двух равномерно заряженных плоскостей

Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13).

Видео:Билет №02 "Теорема Гаусса"Скачать

Билет №02 "Теорема Гаусса"

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей .

Вне плоскостей напряженность поля

Величина напряженности электрического поля цилиндра

Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):

Механические силы, действующие между заряженными телами, называют пондермоторными.

Тогда сила притяжения между пластинами конденсатора:

где S – площадь обкладок конденсатора. Т.к. , то

Видео:Поле равномерно заряженного цилиндраСкачать

Поле равномерно заряженного цилиндра

Это формула для расчета пондермоторной силы.

Читайте также: Меган 2 цилиндры номера

Поле заряженного бесконечно длинного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью , где d q – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

Величина напряженности электрического поля цилиндра

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров для боковой поверхности т.е. зависит от расстояния r.

Следовательно, поток вектора через рассматриваемую поверхность, равен

Видео:Применение теоремы Гаусса-Остроградского. Напряжённость поля пластины, сферы и шара.Скачать

Применение теоремы Гаусса-Остроградского. Напряжённость поля пластины, сферы и шара.

При на поверхности будет заряд По теореме Остроградского-Гаусса , отсюда

Если , т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

Величина напряженности электрического поля цилиндра

Если уменьшать радиус цилиндра R (при ), то можно вблизи поверхности получить поле с очень большой напряженностью и, при , получить нить.

Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком

Внутри меньшего и вне большего цилиндров поле будет отсутствовать (рис. 2.16) .

Величина напряженности электрического поля цилиндра

В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае:

Видео:Урок 224. Напряженность поля неточечных зарядовСкачать

Урок 224. Напряженность поля неточечных зарядов

Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).

Поле заряженного пустотелого шара

Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, – в любой точке проходит через центр шара. ,и силовые линии перпендикулярны поверхности в любой точке. Вообразим вокруг шара – сферу радиуса r (рис. 2.17).

Если то внутрь воображаемой сферы попадет весь заряд q, распределенный по сфере, тогда

Внутри сферы, при поле будет равно нулю, т.к. там нет зарядов:

Читайте также: Закисли тормозные цилиндры нексия

Величина напряженности электрического поля цилиндра

Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы.

Видео:Электростатика | электрическое поле бесконечной нити (тонкого цилиндра)Скачать

Электростатика | электрическое поле бесконечной нити (тонкого цилиндра)

Поле объемного заряженного шара

Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула:

Но внутри шара при сферическая поверхность будет содержать в себе заряд, равный

где ρ – объемная плотность заряда, равная: ; – объем шара. Тогда по теореме Остроградского-Гаусса запишем:

Таким образом, внутри шара

🎥 Видео

Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.Скачать

Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.

Теорема Гаусса для расчета полей цилиндра (нити) и плоскостиСкачать

Теорема Гаусса для расчета полей цилиндра (нити) и плоскости

Лекция 2-2 Потенциал - примерыСкачать

Лекция 2-2  Потенциал  -  примеры

Электромагнетизм Пр3.4. Теорема Гаусса. Поле бесконечного цилиндра.Скачать

Электромагнетизм Пр3.4. Теорема Гаусса. Поле бесконечного цилиндра.

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ суперпозиция полейСкачать

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ суперпозиция полей

Силовые линии электрического поляСкачать

Силовые линии электрического поля

43. Применение теоремы ГауссаСкачать

43. Применение теоремы Гаусса

Урок 218. Напряженность электрического поляСкачать

Урок 218. Напряженность электрического поля

Урок 223. Теорема ГауссаСкачать

Урок 223. Теорема Гаусса

1.3. Поток вектора напряженностиСкачать

1.3. Поток вектора напряженности

Электрическое поле. Теорема ГауссаСкачать

Электрическое поле. Теорема Гаусса

Урок 222. Поток вектора напряженности электрического поляСкачать

Урок 222. Поток вектора напряженности электрического поля

Цилиндр крутится - вихревое электрическое поле мутится? | Олимп | Дикая ботва №2Скачать

Цилиндр крутится - вихревое электрическое поле мутится? | Олимп | Дикая ботва №2

Лекция по физике №11. Теорема Гаусса. Работа эл. поля. Потенциал. Диполь.Скачать

Лекция по физике №11. Теорема Гаусса. Работа эл. поля. Потенциал. Диполь.
Поделиться или сохранить к себе:
Технарь знаток