Вертикальный цилиндр может свободно вращаться вокруг

Авто помощник

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Вертикальный цилиндр может свободно вращаться вокруг

Вертикальный цилиндр может свободно вращаться вокруг

2017-06-03 Вертикальный цилиндр может свободно вращаться вокруг
Сплошной однородный цилиндр А массы $m_ $ может свободно вращаться вокруг горизонтальной оси, которая укреплена на подставке В массы $m_ $ (рис.). На цилиндр плотно намотана легкая нить, к концу К которой приложили постоянную горизонтальную силу $F$. Трения между подставкой и опорной горизонтальной плоскостью нет. Найти:
а) ускорение точки К;
б) кинетическую энергию этой системы через $t$ секунд после начала движения.
Вертикальный цилиндр может свободно вращаться вокруг

Вертикальный цилиндр может свободно вращаться вокруг

(a) Для поступательного движения системы $(m_ + m_ )$, из уравнения: $F_ = mw_ $

$F = (m_ + m_ ) w_ $ или, $w_ = F/(m_ + m_ ) $

Для вращательного движения цилиндра из уравнения: $N_ = I_ \beta_ $

(б) Из уравнения приращения механической энергии: $\Delta T = A_ $
Здесь $\Delta T = T(t)$, поэтому $T(t) = A_ $

Поскольку сила $F$ постоянна и направлен вдоль оси х, искомая работа выполнена.

(Где $x$ — смещение точки приложения силы $F$ в течение временного интервала $t$)

$= F \left ( \frac w_ t^ \right ) = \frac t^ (3m_ + 2m_ )> (m_ + m_ )> = T(t)$ (с использованием формулы (3)

Видео:Скатывание цилиндров с наклонной плоскостиСкачать

Скатывание цилиндров с наклонной плоскости

Вертикальный цилиндр может свободно вращаться вокруг

Вертикальный цилиндр может свободно вращаться вокруг

2017-06-03 Вертикальный цилиндр может свободно вращаться вокруг
Однородный сплошной цилиндр радиуса $R$ и массы $M$ может свободно вращаться вокруг неподвижной горизонтальной оси О (рис.). На цилиндр в один ряд намотан тонкий шнур длины $l$ и массы $m$. Найти угловое ускорение цилиндра в зависимости от длины $x$ свешивающейся части шнура. Считать, что центр тяжести намотанной части шнура находится на оси цилиндра.
Вертикальный цилиндр может свободно вращаться вокруг

Воспользуемся уравнением $\frac >

= N_ $ Относительно оси через O (1)

Для этого найдем угловой момент системы $M_ $ вокруг данной оси вращения и соответствующего момента $N_ $. Угловой момент равен

$M_ = I \omega + mvR = \left ( \frac > + m \right ) R^ \omega$

[Где $I = \frac > R^ $ и $v = \omega R$ (без проскальзывания шнура)]

Силы тяжести, нависающей части шнура, является единственной внешней силой, которая проявляет крутящий момент вокруг оси z, проходящий через O и дает,

$N_ = \left ( \frac \right ) xgR$

Отсюда из уравнения $\frac >

$\left ( \frac > + mR^ \right ) \beta_ = \frac xgR$

Примечание. Мы можем решить эту проблему, используя закон сохранение механической энергии системы (цилиндр + нить) в однородном поле тяжести,

Видео:трехзвенный кулачковый механизм с поступательно движущимся толкателем с роликомСкачать

трехзвенный кулачковый механизм с поступательно движущимся толкателем с роликом

Вертикальный цилиндр может свободно вращаться вокруг вертикальной неподвижной оси. Масса цилиндра 8 кг, радиус 20 см. В цилиндр попадает горизонтально летя.

Вертикальный цилиндр может свободно вращаться вокруг вертикальной неподвижной оси. Масса цилиндра 8 кг, радиус 20 см. В цилиндр попадает горизонтально летящая пуля массой 10 г со скоростью 200 м/с и моментально застревает в нем. Траектория пули проходит на расстоянии 10 см от оси цилиндра. Найдите угловую скорость цилиндра после удара, если до удара цилиндр покоился.

Вертикальный цилиндр может свободно вращаться вокруг вертикальной неподвижной оси. Масса цилиндра 8 кг, радиус 20 см. В цилиндр попадает горизонтально летящая пуля массой 10 г со скоростью 200 м/с и моментально застревает в нем. Траектория пули проходит на расстоянии 10 см от оси цилиндра. Найдите угловую скорость цилиндра после удара, если до удара цилиндр покоился.

ет нормально монохроматический свет. Зрительная труба спектрометра наведена на максимум третьего порядка. Чтобы навести трубу на другой максимум того же порядка, её нужно повернуть на угол 20 градусов

ного тетраэдра с ребром а, полностью погруженного в жидкость плотности ρ, находится на глубине h. Определите силу, действующую со стороны жидкости на боковую грань тетраэдра, если атмосферное д

Чему равно изменение энтропии 10 г воздуха при изобарном расширении от 3 до 8 л.

Видео:Цилиндрические поверхностиСкачать

Цилиндрические поверхности

Вертикальный цилиндр может свободно вращаться вокруг

Физические основы механики
§ 3. Динамика вращательного движения твердого тела вокруг неподвижной оси

Условия задач и ссылки на решения по данной теме:

1 Вычислить момент инерции молекулы NO2 относительно оси z, проходящей через центр масс молекулы перпендикулярно плоскости, содержащей ядра атомов. Межъядерное расстояние d этой молекулы равно 0,118 нм, валентный угол 140
РЕШЕНИЕ

2 Физический маятник представляет собой стержень длиной 1 м и массой m1=1 кг с прикрепленным к одному из его концов диском массой m2=0,5 m1. Определить момент инерции Jz такого маятника относительно оси Оz, проходящей через точку O на стержне перпендикулярно плоскости чертежа
РЕШЕНИЕ

3 Вал в виде сплошного цилиндра массой m1=10 кг насажен на горизонтальную ось. На цилиндр намотан шнур, к свободному концу которого подвешена гиря массой m2=2 кг. С каким ускорением a будет опускаться гиря, если ее предоставить самой себе?
РЕШЕНИЕ

4 Через блок в виде диска, имеющий массу m=80 г, перекинута тонкая гибкая нить, к концам которой подвешены грузы массами m1=100 г и m2=200 г. С каким ускорением будут двигаться грузы, если их предоставить самим себе? Трением пренебречь.
РЕШЕНИЕ

5 Маховик в виде диска массой m=50 кг и радиусом 20 см был раскручен до частоты вращения 480 мин-1 и затем предоставлен самому себе. Вследствие трения маховик остановился. Найти момент сил трения, считая его постоянным для двух случаев-маховик остановился через t=50 c; маховик до полной остановки сделал N=200 оборотов.
РЕШЕНИЕ

6 Платформа в виде диска радиусом R=1,5 м и массой m1=180 кг вращается по инерции около вертикальной оси с частотой n=10 мин-1. В центре платформы стоит человек массой m2=60 кг. Какую линейную скорость относительно пола помещения будет иметь человек, если он перейдет на край платформы
РЕШЕНИЕ

7 Человек стоит в центре скамьи Жуковского и вместе с ней вращается по инерции. Частота вращения n1=0,5 с-1. Момент инерции тела человека относительно оси вращения равен 1,6 кг*м2. В вытянутых в стороны руках человек держит по гире массой m=2 кг каждая. Расстояние между гирями l1= 1,6 м. Определить частоту вращения n2 скамьи с человеком, когда он опустит руки и расстояние l2 между гирями станет равным 0,4 м. Моментом инерции скамьи пренебречь.
РЕШЕНИЕ

8 Стержень длиной l=1,5 м и массой M=10 кг может вращаться вокруг неподвижной оси, проходящей через верхний конец стержня. В середину стержня ударяет пуля массой m=10 г, летящая в горизонтальном направлении со скоростью v0=500 м/с, и застревает в стержне. На какой угол отклонится стержень после удара?
РЕШЕНИЕ

3.1 Определить момент инерции J материальной точки массой m=0,3 кг относительно оси, отстоящей от точки на r=20 см.
РЕШЕНИЕ

3.2 Два маленьких шарика массой m=10 г каждый скреплены тонким невесомым стержнем длиной l=20 см. Определить момент инерции системы относительно оси, перпендикулярной стержню и проходящей через центр масс.
РЕШЕНИЕ

3.3 Два шара массами m и 2m, m=10 г закреплены на тонком невесомом стержне длиной l=40 см так, как это указано на рис. 3.7. Определить моменты инерции J системы относительно оси, перпендикулярной стержню и проходящей через его конец в этих двух случаях. Размерами шаров пренебречь.
РЕШЕНИЕ

3.4 Три маленьких шарика массой m=10 г каждый расположены в вершинах равностороннего треугольника со стороной a=20 см и скреплены между собой. Определить момент инерции системы относительно оси перпендикулярной плоскости треугольника и проходящей через центр описанной окружности; лежащей в плоскости треугольника и проходящей через центр описанной окружности и одну из вершин треугольника. Массой стержней, соединяющих шары, пренебречь.
РЕШЕНИЕ

3.5 Определить моменты инерции Jx, Jу, Jz трехатомных молекул типа АВ2 относительно осей x, y, z, проходящих через центр инерции С молекулы (ось z перпендикулярна плоскости ху). Межъядерное расстояние AB обозначено d, валентный угол α. Вычисления выполнить для следующих молекул H2O(d=0,097 нм, α=104°30; SO2(d=0,145 нм, α=124)
РЕШЕНИЕ

3.6 Определить момент инерции J тонкого однородного стержня длиной l=30 см и массой m=100 г относительно оси, перпендикулярной стержню и проходящей через его конец; его середину; точку, отстоящую от конца стержня на 1/3 его длины.
РЕШЕНИЕ

3.7 Определить момент инерции тонкого однородного стержня длиной l=60 см и массой m=100 г относительно оси, перпендикулярной ему и проходящей через точку стержня, удаленную на a=20 см от одного из его концов.
РЕШЕНИЕ

3.8 Вычислить момент инерции J проволочного прямоугольника со сторонами a=12 см и b=16 см относительно оси, лежащей в плоскости прямоугольника и проходящей через середины малых сторон. Масса равномерно распределена по длине проволоки с линейной плотностью τ=0,1 кг/м.
РЕШЕНИЕ

3.9 Два однородных тонких стержня-AB длиной l1=40 см и массой m1=900 г и CD длиной l2=40 см и массой m2=400 г скреплены под прямым углом. Определить момент инерции J системы стержней относительно оси OO, проходящей через конец стержня AB параллельно стержню CD.
РЕШЕНИЕ

3.10 Решить предыдущую задачу для случая, когда ось OO проходит через точку A перпендикулярно плоскости чертежа.
РЕШЕНИЕ

3.11 Определить момент инерции J проволочного равностороннего треугольника со стороной a=10 см относительно оси, лежащей в плоскости треугольника и проходящей через его вершину параллельно стороне, противоположной этой вершине; оси, совпадающей с одной из сторон треугольника. Масса m треугольника равна 12 г и равномерно распределена по длине проволоки.
РЕШЕНИЕ

3.12 На концах тонкого однородного стержня длиной l и массой Зm прикреплены маленькие шарики массами m и 2m. Определить момент инерции J такой системы относительно оси, перпендикулярной стержню и проходящей через точку O, лежащую на оси стержня. Вычисления выполнить для случаев изображенных на рис. 3.11. При расчетах принять l=1 м, m=0,1 кг. Шарики рассматривать как материальные точки.
РЕШЕНИЕ

3.13 Найти момент инерции J тонкого однородного кольца радиусом R=20 см и массой m=100 г относительно оси, лежащей в плоскости кольца и проходящей через его центр.
РЕШЕНИЕ

3.14 Определить момент инерции J кольца массой m=50 г и радиусом R=10 см относительно оси, касательной к кольцу.
РЕШЕНИЕ

3.15 Диаметр диска d=20 см, масса m=800 г. Определить момент инерции диска относительно оси, проходящей через середину одного из радиусов перпендикулярно плоскости диска.
РЕШЕНИЕ

3.16 В однородном диске массой m=1 кг и радиусом r=30 см вырезано круглое отверстие диаметром d=20 см, центр которого находится на расстоянии l=15 см от оси диска. Найти момент инерции J полученного тела относительно оси, проходящей перпендикулярно плоскости диска через его центр.
РЕШЕНИЕ

3.17 Найти момент инерции J плоской однородной прямоугольной пластины массой m=800 г относительно оси, совпадающей с одной из ее сторон, если длина a другой стороны равна 40 см.
РЕШЕНИЕ

3.18 Определить момент инерции J тонкой плоской пластины со сторонами a=10 см и b=20 см относительно оси, проходящей через центр масс пластины параллельно большей стороне. Масса пластины равномерно распределена по ее площади с поверхностной плотностью 1,2 кг/м2.
РЕШЕНИЕ

3.19 Тонкий однородный стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси, проходящей через точку O на стержне. Стержень отклонили от вертикали на угол α и отпустили. Определить для начального момента времени угловое ε и тангенциальное aτ ускорения точки В на стержне. Вычисления произвести для следующих случаев a=0, b=2/3 l, α=π/2; a=l/3, b=l, α=π/3; a=l/4, b=l/2, α=2/3 π
РЕШЕНИЕ

3.20 Однородный диск радиусом R=10 см может свободно вращаться вокруг горизонтальной оси, перпендикулярной плоскости диска и проходящей через точку O на нем. Диск отклонили на угол α и отпустили. Определить для начального момента времени угловое и тангенциальное ускорения точки B, находящейся на диске. Вычисления выполнить для следующих случаев a=R, b=R/2, α=π/2; a=R/2, b=R, α=π/6; a=2/3 R, b=2/3 R, α=2/3 π
РЕШЕНИЕ

3.21 Тонкий однородный стержень длиной l=50 см и массой m=400 г вращается с угловым ускорением 3 рад/с2 около оси, проходящей перпендикулярно стержню через его середину. Определить вращающий момент M.
РЕШЕНИЕ

3.22 На горизонтальную ось насажены маховик и легкий шкив радиусом R=5 см. На шкив намотан шнур, к которому привязан груз массой m=0,4 кг. Опускаясь равноускоренно, груз прошел путь s=1,8 м за время t=3 c. Определить момент инерции маховика. Массу шкива считать пренебрежимо малой.
РЕШЕНИЕ

3.23 Вал массой m=100 кг и радиусом R=5 см вращался с частотой n=8 с-1. К цилиндрической поверхности вала прижали тормозную колодку с силой F=40 Н, под действием которой вал остановился через t=10 c. Определить коэффициент трения
РЕШЕНИЕ

3.24 На цилиндр намотана тонкая гибкая нерастяжимая лента, массой которой по сравнению с массой цилиндра можно пренебречь. Свободный конец ленты прикрепили к кронштейну и предоставили цилиндру опускаться под действием силы тяжести. Определить линейное ускорение a оси цилиндра, если цилиндр сплошной; полый тонкостенный.
РЕШЕНИЕ

3.25 Через блок, имеющий форму диска, перекинут шнур. К концам шнура привязали грузики массой m1= 100 г и m2=110 г. С каким ускорением a будут двигаться грузики, если масса m блока равна 400 г? Трение при вращении блока ничтожно мало.
РЕШЕНИЕ

3.26 Два тела массами m1=0,25 кг и m2=0,15 кг связаны тонкой нитью, переброшенной через блок. Блок укреплен на краю горизонтального стола, по поверхности которого скользит тело массой m1. С каким ускорением a движутся тела и каковы силы T1 и T2 натяжения нити по обе стороны от блока? Коэффициент трения тела о поверхность стола равен 0,2. Масса m блока равна 0,1 кг и ее можно считать равномерно распределенной по ободу. Массой нити и трением в подшипниках оси блока пренебречь.
РЕШЕНИЕ

3.27 Через неподвижный блок массой m=0,2 кг перекинут шнур, к концам которого подвесили грузы массами m1=0,3 кг и m2=0,5 кг. Определить силы натяжения T1 и T2 шнура по обе стороны блока во время движения грузов, если масса блока равномерно распределена по ободу.
РЕШЕНИЕ

3.28 Шар массой m=10 кг и радиусом R=20 см вращается вокруг оси, проходящей через его центр. Уравнение вращения шара имеет вид φ=A+Bt2+Сt3, где В=4 рад/с2, С=-1 рад/с3. Найти закон изменения момента сил, действующих на шар. Определить момент сил M в момент времени t=2 c.
РЕШЕНИЕ

3.29 Однородный тонкий стержень массой m1=0,2 кг и длиной 1 м может свободно вращаться вокруг горизонтальной оси z, проходящей через точку O. В точку A на стержне попадает пластилиновый шарик, летящий горизонтально перпендикулярно оси z со скоростью v=10 м/с и прилипает к стержню. Масса m2 шарика равна 10 г. Определить угловую скорость стержня и линейную скорость u нижнего конца стержня в начальный момент времени. Вычисления выполнить для следующих значений расстояния между точками A и О l/2; l/3; l/4
РЕШЕНИЕ

3.30 Однородный диск массой m1=0,2 кг и радиусом R=20 см может свободно вращаться вокруг горизонтальной оси z, перпендикулярной плоскости диска и проходящей через точку C. В точку A на образующей диска попадает пластилиновый шарик, летящий горизонтально перпендикулярно оси z со скоростью v=10 м/с, и прилипает к его поверхности. Масса шарика равна 10 г. Определить угловую скорость диска и линейную скорость u точки O на диске в начальный момент времени. Вычисления выполнить для следующих значений а и b:a=b=R; a=R/2, b=R; a=2R/3, b=R/2; a=R/3, b=2R/3.
РЕШЕНИЕ

3.31 Человек стоит на скамье Жуковского и ловит рукой мяч массой m=0,4 кг, летящий в горизонтальном направлении со скоростью 20 м/с. Траектория мяча проходит на расстоянии r=0,8 м от вертикальной оси вращения скамьи. С какой угловой скоростью начнет вращаться скамья Жуковского с человеком, поймавшим мяч, если суммарный момент инерции J человека и скамьи равен 6 кг*м2?
РЕШЕНИЕ

3.32 Маховик, имеющий вид диска радиусом R=40 см и массой m1=48 кг, может вращаться вокруг горизонтальной оси. К его цилиндрической поверхности прикреплен конец нерастяжимой нити, к другому концу которой подвешен груз массой m2=0,2 кг. Груз был приподнят и затем опущен. Упав свободно с высоты h=2 м, груз натянул нить и благодаря этому привел маховик во вращение. Какую угловую скорость груз сообщил при этом маховику?
РЕШЕНИЕ

3.33 На краю горизонтальной платформы, имеющей форму диска радиусом R=2 м, стоит человек массой m1=80 кг. Масса m2 платформы равна 240 кг. Платформа может вращаться вокруг вертикальной оси, проходящей через ее центр. Пренебрегая трением, найти, с какой угловой скоростью будет вращаться платформа, если человек будет идти вдоль ее края со скоростью v=2 м/с относительно платформы.
РЕШЕНИЕ

3.34 Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек массой m1=60 кг. На какой угол повернется платформа, если человек пойдет вдоль края платформы и, обойдя его, вернется в исходную точку на платформе? Масса m2 платформы равна 240 кг. Момент инерции J человека рассчитывать как для материальной точки.
РЕШЕНИЕ

3.35 Платформа в виде диска радиусом R=1 м вращается по инерции с частотой 6 мин-1. На краю платформы стоит человек, масса m которого равна 80 кг. С какой частотой n будет вращаться платформа, если человек перейдет в ее центр? Момент инерции J платформы равен 120 кг*м2. Момент инерции человека рассчитывать как для материальной точки.
РЕШЕНИЕ

3.36 В центре скамьи Жуковского стоит человек и держит в руках стержень длиной l=2,4 м и массой m=8 кг, расположенный вертикально по оси вращения скамейки. Скамья с человеком вращается с частотой n1=1 с-1. С какой частотой n2 будет вращаться скамья с человеком, если он повернет стержень в горизонтальное положение? Суммарный момент инерции J человека и скамьи равен 6 кг*м2.
РЕШЕНИЕ

3.37 Человек стоит на скамье Жуковского и держит в руках стержень, расположенный вертикально вдоль оси вращения скамейки. Стержень служит осью вращения колеса, расположенного на верхнем конце стержня. Скамья неподвижна, колесо вращается с частотой n=10 с-1. Радиус колеса равен 20 см, его масса m=3 кг. Определить частоту вращения n2 скамьи, если человек повернет стержень на угол 180? Суммарный момент инерции J человека и скамьи равен 6 кг*м2. Массу колеса можно считать равномерно распределенной по ободу.
РЕШЕНИЕ

3.38 Шарик массой m=100 г, привязанный к концу нити длиной 1 м, вращается, опираясь на горизонтальную плоскость, с частотой n1=1 с-1. Нить укорачивается и шарик приближается к оси вращения до расстояния l2=0,5 м. С какой частотой n2 будет при этом вращаться шарик? Какую работу A совершит внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь.
РЕШЕНИЕ

3.39 Маховик вращается по закону, выражаемому уравнением A+Вt+Сt2, где A=2 рад, В=32 рад/с, С=-4 рад/с2. Найти среднюю мощность, развиваемую силами, действующими на маховик при его вращении, до остановки, если его момент инерции J=100 кг*м2.
РЕШЕНИЕ

3.40 Маховик вращается по закону, выражаемому уравнением φ=A+Вt+Сt2, где A=2 рад, В=16 рад/с, С=-2 рад/с2. Момент инерции маховика равен 50 кг*м2. Найти законы, по которым меняются вращающий момент и мощность. Чему равна мощность в момент времени t=3 с?
РЕШЕНИЕ

3.41 Якорь мотора вращается с частотой n=1500 мин-1. Определить вращающий момент, если мотор развивает мощность N=500 Вт.
РЕШЕНИЕ

3.42 Со шкива диаметром d=0,48 м через ремень передается мощность N=9 кВт. Шкив вращается с частотой n=240 мин-1. Сила натяжения T1 ведущей ветви ремня в два раза больше силы натяжения T2 ведомой ветви. Найти силы натяжения обеих ветвей ремня.
РЕШЕНИЕ

3.43 Для определения мощности мотора на его шкив диаметром d=20 см накинули ленту. К одному концу ленты прикреплен динамометр, к другому подвесили груз P. Найти мощность N мотора, если мотор вращается с частотой n=24 с-1, масса m груза равна 1 кг и показание динамометра F=24 Н.
РЕШЕНИЕ

3.44 Маховик в виде диска массой m=80 кг и радиусом R=30 см находится в состоянии покоя. Какую работу нужно совершить, чтобы сообщить маховику частоту n=10 с-1? Какую работу A2 пришлось бы совершить, если бы при той же массе диск имел меньшую толщину, но вдвое больший радиус?
РЕШЕНИЕ

3.45 Кинетическая энергия T вращающегося маховика равна 1 кДж. Под действием постоянного тормозящего момента маховик начал вращаться равнозамедленно и, сделав N=80 оборотов, остановился. Определить момент M силы торможения.
РЕШЕНИЕ

3.46 Маховик, момент инерции которого равен 40 кг*м2, начал вращаться равноускоренно из состояния покоя под действием момента силы M=20 Н*м. Вращение продолжалось в течение t=10 c. Определить кинетическую энергию T, приобретенную маховиком.
РЕШЕНИЕ

3.47 Пуля массой m=10 г летит со скоростью v=800 м/с, вращаясь около продольной оси с частотой n=3000 с-1. Принимая пулю за цилиндрик диаметром d=8 мм, определить полную кинетическую энергию T пули.
РЕШЕНИЕ

3.48 Сплошной цилиндр массой m=4 кг катится без скольжения по горизонтальной поверхности. Линейная скорость оси цилиндра равна 1 м/с. Определить полную кинетическую энергию T цилиндра.
РЕШЕНИЕ

3.49 Обруч и сплошной цилиндр, имеющие одинаковую массу m=2 кг, катятся без скольжения с одинаковой скоростью v=5 м/с. Найти кинетические энергии T1 и T2 этих тел.
РЕШЕНИЕ

3.50 Шар катится без скольжения по горизонтальной поверхности. Полная кинетическая энергия T шара равна 14 Дж. Определить кинетическую энергию T1 поступательного и T2 вращательного движения шара.
РЕШЕНИЕ

3.51 Определить линейную скорость v центра шара, скатившегося без скольжения с наклонной плоскости высотой h=1 м.
РЕШЕНИЕ

3.52 Сколько времени t будет скатываться без скольжения обруч с наклонной плоскости длиной l=2 м и высотой h=10 см?
РЕШЕНИЕ

3.53 Тонкий прямой стержень длиной l=1 м прикреплен к горизонтальной оси, проходящей через его конец. Стержень отклонили на угол 60 от положения равновесия и отпустили. Определить линейную скорость v нижнего конца стержня в момент прохождения через положение равновесия.
РЕШЕНИЕ

3.54 Однородный тонкий стержень длиной l=1 м может свободно вращаться вокруг горизонтальной оси z, проходящей через точку O на стержне. Стержень отклонили от положения равновесия на угол α и отпустили. Определить угловую скорость стержня и линейную скорость точки B на стержне в момент прохождения им положения равновесия. Вычисления выполнить для следующих случаев: a=0, b=l/2, α=π/3; a=l/3, b=2l/3, α=π/2; a=l/4, b=l, α=2π/3
РЕШЕНИЕ

3.55 Карандаш длиной l=15 см, поставленный вертикально, падает на стол. Какую угловую и линейную v скорости будет иметь в конце падения середина карандаша? верхний его конец? Считать, что трение настолько велико, что нижний конец карандаша не проскальзывает.
РЕШЕНИЕ

3.56 Однородный диск радиусом R=20 см может свободно вращаться вокруг горизонтальной оси z, перпендикулярной плоскости диска и проходящей через точку O. Определить угловую и линейную v скорости точки В на диске в момент прохождения им положения равновесия. Вычисления выполнить для следующих случаев a=b=R, α=π/2; a=R/2, b=0, α=π/3; a=2R/3, b=2R/3, α=5π/6; a=R/3, b=R, α=2π/3.
РЕШЕНИЕ

📸 Видео

Вращающиеся цилиндрыСкачать

Вращающиеся цилиндры

Геометрия 9 класс (Урок№34 - Тела и поверхности вращения.)Скачать

Геометрия 9 класс (Урок№34 - Тела и поверхности вращения.)

Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)Скачать

Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)

Комбинация тел вращения. Задание 5. ЕГЭ. СТЕРЕОМЕТРИЯСкачать

Комбинация тел вращения. Задание 5. ЕГЭ. СТЕРЕОМЕТРИЯ

Принцип Полета НЛО.Как Летают Инопланетные Корабли?Скачать

Принцип Полета НЛО.Как Летают Инопланетные Корабли?

Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронталиСкачать

Определение натуральной величины треугольника АВС методом вращения вокруг горизонтали или фронтали

Задание 50. Построение ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ЦИЛИНДРОВСкачать

Задание 50. Построение ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ЦИЛИНДРОВ

Тела вращения. ЦилиндрСкачать

Тела вращения. Цилиндр

Усеченный цилиндр: проекции сечения, изометрия, развертка поверхностиСкачать

Усеченный цилиндр: проекции сечения, изометрия, развертка поверхности

СтатГрад по физике №2 от 9 декабря 2022 | Физика ЕГЭ — Саня ЭбонитСкачать

СтатГрад по физике №2 от 9 декабря 2022 | Физика ЕГЭ — Саня Эбонит

Задача на теорему об изменении кинетической энергииСкачать

Задача на теорему об изменении кинетической энергии

как замерить выработку поршня и цилиндраСкачать

как замерить выработку поршня и цилиндра

Скатывание тела (колеса, цилиндра) по наклонной плоскостиСкачать

Скатывание тела (колеса, цилиндра) по наклонной плоскости

Какой цилиндр скатится быстрее: сплошной или полый? Разбор задачи.Скачать

Какой цилиндр скатится быстрее: сплошной или полый? Разбор задачи.

Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать

Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)
Поделиться или сохранить к себе:
Технарь знаток