Вид сечения поверхности прямого цилиндра

Авто помощник

Бывают следующие случаи сечения поверхности прямого кругового цилиндра плоскостью:

1) окружность, если секущая плоскость Р перпендикулярна оси цилиндра, причем она параллельна основанию цилиндра (рис. 104а);

2) эллипс, если секущая плоскость Р не перпендикулярна и не параллельна оси цилиндра (рис. 104б);

3) пара прямых, если секущая плоскость Q содержит ось цилиндра или параллельна ей (рис. 104в).

Вид сечения поверхности прямого цилиндра

Особый интерес представляет случай, когда наклонная секущая плоскость пересекает основание цилиндра (плоскость Р1 на рис. 104б). Здесь часть эллипса может быть неверно принята за параболу или гиперболу. Нужно знать, что ни парабола, ни гипербола не могут быть получены как сечение поверхности кругового цилиндра плоскостью.

На рисунке 105 показано пересечение поверхности цилиндра фронтально-проецирующей плоскостью Р. Здесь для цилиндра рассмотрено решение всех трех основных задач, связанных с сечением тела плоскостью, т. е. отыскание проекций сечения, его натурального вида и построение развёртки.

Проекции сечения. На рисунке 105а рассмотрено наглядное изображение сечения, а отсюда видно, что большая ось эллипса представлена хордой 0–6, которая пересекает ось цилиндра в точке С. При этом малая ось направлена по горизонтали, перпендикулярной в плоскости V. Следовательно, малая ось проектируется без искажения на горизонтальной и профильной плоскости (рис. 105б), а центр эллипса находится на оси цилиндра (точка С). Следует отметить, что на рисунке 105б ось симметрии проходит через точки 0–6.

Вид сечения поверхности прямого цилиндра

Получающийся в горизонтальном сечении эллипс проецируется на плоскость в виде окружности основания, а на профильную плоскость – в виде эллипса. При этом большая ось эллипса 3˝-9˝ является проекцией малой оси 3–9 исходного эллипса, а малая ось 0˝-6˝ представляет собой проекцию большой оси 0–6. На фронтальной плоскости проекция эллипса есть отрезок 0́-6́, который равен большой оси самого эллипса.

Следовательно, в самом начале построения можно получить две готовые проекции сечения: горизонтальную и фронтальную. После этого нужно построить только профильную проекцию. Следует заметить, что точки 3˝ и 9˝ отделяют видимую часть кривой от невидимой на профильной проекции. Если секущая плоскость Р наклонена к плоскости основания цилиндра под углом 45°, то профильная проекция эллипса является окружностью. На рисунке 105 угол наклона секущей плоскости меньше 45°, вследствие этого профильная проекция большой оси представляет собой малую ось профильной проекции эллипса. В том случае, если бы угол наклона секущей плоскости был больше 45°, проекция большой оси была бы большой осью профильной проекции эллипса.

Читайте также: Fenox передние тормозные цилиндры

Построение натурального вида сечения. Сначала нужно отметить цифрами ряд точек на проекциях эллипса (на рис. 105 отмечено 12 таких точек), после чего следует начинать построение натурального вида сечения. Выполнить это можно двумя способами:

1) построением совмещения плоскости Р с горизонтальной плоскостью путем вращения ее около горизонтального следа Рh. На рисунке 105 совмещение построено слева от Рh и соответствующие точки отмечены цифрами с чертой сверху;

2) указанием 12 точек эллипса. При этом хорды, параллельные Рh, проецируются без искажения на горизонтальную плоскость, а расстояния между этими хордами проектируются на фронтальную плоскость. Вследствие этого проводят через точки следа Рv, которые отмечены цифрами, прямые, перпендикулярные Рv. Затем перпендикулярно этим линиям проводят ось симметрии данного эллипса. Вместе с крайними вспомогательными прямыми ее пересечение определит точки эллипса 0 и 6, т. е. концы большой оси. После этого от точек А, В и С следует отложить в обе стороны половины соответствующих хорд (Аl = а1, В2 = b2, С3 = с3).

В данном случае хорда 3–9 является малой осью эллипса.

Развертка. На рисунке 106 показано построение развертки боковой поверхности неусеченного цилиндра. Эта боковая поверхность в развернутом состоянии является прямоугольником, основание которого равно длине окружности (πD), а высота – образующей цилиндра.

Вид сечения поверхности прямого цилиндра

В данном случае длина окружности заменена периметром вписанного правильного 12-угольника (рис. 106), после чего через соответствующие точки делений спрямленной окружности проведены образующие. При этом на каждой образующей отмечена ее точка встречи с плоскостью Р.

Видео:РТ_ПБ_61.1) Построить проекции линии пересечения цилиндра плоскостью частного положения.Скачать

РТ_ПБ_61.1) Построить проекции линии пересечения цилиндра плоскостью частного положения.

Цилиндры

Видео:Точка, линия на поверхности прямого кругового цилиндра. Сечение плоскостью наклонного цилиндра.Скачать

Точка, линия на поверхности прямого кругового цилиндра. Сечение плоскостью наклонного цилиндра.

Основные определения и свойства цилиндра

Вид сечения поверхности прямого цилиндра

Вид сечения поверхности прямого цилиндра

Вид сечения поверхности прямого цилиндра

Если из каждой точки окружности опустить перпендикуляр на плоскость β , то основания этих перпендикуляров образуют на плоскости β окружность радиуса r , центр O1 которой является основанием перпендикуляра, опущенного из точки O на плоскость β (рис.2).

Вид сечения поверхности прямого цилиндра

Вид сечения поверхности прямого цилиндра

Вид сечения поверхности прямого цилиндра

Отрезок перпендикуляра, опущенного из любой точки окружности с центром O на плоскость β , который заключен между плоскостями α и β , называют образующей цилиндра .

Совокупность всех образующих цилиндра называют цилиндрической поверхностью .

Фигуру, ограниченную цилиндрической поверхностью и плоскостями α и β, называют цилиндром .

Отрезок OO1 называют осью цилиндра .

Радиус окружности Радиус окружности на плоскости α с центром в точке O называют радиусом цилиндра .

Круги с центрами O и O1 на плоскостях α и β , называют основаниями цилиндра .

Замечание 1. Цилиндрическую поверхность часто называют боковой поверхностью цилиндра . Боковая поверхность цилиндра и основания цилиндра вместе составляют полную поверхность цилиндра .

Замечание 2. Каждая образующая цилиндра параллельна оси цилиндра, а длина каждой образующей цилиндра равна высоте цилиндра.

Замечание 3. Прямая OO1 является осью симметрии цилиндра, а середина отрезка OO1 является центром симметрии цилиндра.

Читайте также: Форд фьюжн цилиндры сцепления

Видео:Построение линии пересечения поверхности цилиндра с проецирующей плоскостиСкачать

Построение линии пересечения поверхности цилиндра с проецирующей плоскости

Сечения цилиндра

Определение 2. Сечением цилиндра называют пересечение цилиндра с плоскостью.
Если сечение проходит через ось цилиндра, то такое сечение называют осевым сечением цилиндра (рис. 3).

Вид сечения поверхности прямого цилиндра

На рисунке 3 изображено одно из осевых сечений цилиндра – прямоугольник AA1B1B .

Замечание 4. Каждое осевое сечение цилиндра с радиусом r и высотой h является прямоугольником со сторонами 2r и h .

Определение 3. Перпендикулярным сечением цилиндра называют сечение, перпендикулярное оси цилиндра (рис. 4).

Вид сечения поверхности прямого цилиндра

Замечание 5. Любым перпендикулярным сечением цилиндра будет круг радиуса r .

Замечание 6. Более подробно случаи взаимного расположения цилиндра и плоскости рассматриваются в разделе нашего справочника «Взаимное расположение цилиндра и плоскости в пространстве».

Видео:Развертка цилиндраСкачать

Развертка цилиндра

Объем цилиндра. Площадь боковой поверхности цилиндра.
Площадь полной поверхности цилиндра

Для цилиндра с радиусом r и высотой h (рис. 5)

Вид сечения поверхности прямого цилиндра

введем следующие обозначения

Vобъем цилиндра
Sбокплощадь боковой поверхности цилиндра
Sполнплощадь полной поверхности цилиндра
Sоснплощадь основания цилиндра

Тогда справедливы следующие формулы для вычисления объема, площади боковой и полной поверхности цилиндра:

при помощи предельного перехода, когда число сторон правильной призмы n неограниченно возрастает. Однако доказательство этого факта выходит за рамки школьной программы.

Видео:Задание 38. Как построить УСЕЧЕННЫЙ ЦИЛИНДР. Построение НВ фигуры сечения. Часть 1Скачать

Задание 38. Как построить УСЕЧЕННЫЙ ЦИЛИНДР.  Построение НВ фигуры сечения. Часть 1

Сечение поверхности цилиндра

Лекция № 11. Пересечение поверхности тел вращения проецирующей плоскостью

Бывают следующие случаи сечения поверхности прямого кругового цилиндра плоскостью:

1) окружность, если секущая плоскость Р перпендикулярна оси цилиндра, причем она параллельна основанию цилиндра (рис. 104а);

2) эллипс, если секущая плоскость Р не перпендикулярна и не параллельна оси цилиндра (рис. 104б);

3) пара прямых, если секущая плоскость Q содержит ось цилиндра или параллельна ей (рис. 104в).

Вид сечения поверхности прямого цилиндра

Особый интерес представляет случай, когда наклонная секущая плоскость пересекает основание цилиндра (плоскость Р1 на рис. 104б). Здесь часть эллипса может быть неверно принята за параболу или гиперболу. Нужно знать, что ни парабола, ни гипербола не могут быть получены как сечение поверхности кругового цилиндра плоскостью.

На рисунке 105 показано пересечение поверхности цилиндра фронтально‑проецирующей плоскостью Р. Здесь для цилиндра рассмотрено решение всех трех основных задач, связанных с сечением тела плоскостью, т. е. отыскание проекций сечения, его натурального вида и построение развёртки.

Проекции сечения. На рисунке 105а рассмотрено наглядное изображение сечения, а отсюда видно, что большая ось эллипса представлена хордой 0–6, которая пересекает ось цилиндра в точке С. При этом малая ось направлена по горизонтали, перпендикулярной в плоскости V. Следовательно, малая ось проектируется без искажения на горизонтальной и профильной плоскости (рис. 105б), а центр эллипса находится на оси цилиндра (точка С). Следует отметить, что на рисунке 105б ось симметрии проходит через точки 0–6.

Читайте также: Допуск при расточке цилиндра

Вид сечения поверхности прямого цилиндра

Получающийся в горизонтальном сечении эллипс проецируется на плоскость в виде окружности основания, а на профильную плоскость – в виде эллипса. При этом большая ось эллипса 3˝‑9˝ является проекцией малой оси 3–9 исходного эллипса, а малая ось 0˝‑6˝ представляет собой проекцию большой оси 0–6. На фронтальной плоскости проекция эллипса есть отрезок 0́‑6́, который равен большой оси самого эллипса.

Следовательно, в самом начале построения можно получить две готовые проекции сечения: горизонтальную и фронтальную. После этого нужно построить только профильную проекцию. Следует заметить, что точки 3˝ и 9˝ отделяют видимую часть кривой от невидимой на профильной проекции. Если секущая плоскость Р наклонена к плоскости основания цилиндра под углом 45°, то профильная проекция эллипса является окружностью. На рисунке 105 угол наклона секущей плоскости меньше 45°, вследствие этого профильная проекция большой оси представляет собой малую ось профильной проекции эллипса. В том случае, если бы угол наклона секущей плоскости был больше 45°, проекция большой оси была бы большой осью профильной проекции эллипса.

Построение натурального вида сечения. Сначала нужно отметить цифрами ряд точек на проекциях эллипса (на рис. 105 отмечено 12 таких точек), после чего следует начинать построение натурального вида сечения. Выполнить это можно двумя способами:

1) построением совмещения плоскости Р с горизонтальной плоскостью путем вращения ее около горизонтального следа Ph. На рисунке 105 совмещение построено слева от Ph и соответствующие точки отмечены цифрами с чертой сверху;

2) указанием 12 точек эллипса. При этом хорды, параллельные Ph, проецируются без искажения на горизонтальную плоскость, а расстояния между этими хордами проектируются на фронтальную плоскость. Вследствие этого проводят через точки следа Pv, которые отмечены цифрами, прямые, перпендикулярные Pv. Затем перпендикулярно этим линиям проводят ось симметрии данного эллипса. Вместе с крайними вспомогательными прямыми ее пересечение определит точки эллипса 0 и 6, т. е. концы большой оси. После этого от точек А, В и С следует отложить в обе стороны половины соответствующих хорд (Al = а1, В2 = b2, C3 = с3).

В данном случае хорда 3–9 является малой осью эллипса.

Развертка. На рисунке 106 показано построение развертки боковой поверхности неусеченного цилиндра. Эта боковая поверхность в развернутом состоянии является прямоугольником, основание которого равно длине окружности (πD), а высота – образующей цилиндра.

Вид сечения поверхности прямого цилиндра

Вид сечения поверхности прямого цилиндра

В данном случае длина окружности заменена периметром вписанного правильного 12‑угольника (рис. 106), после чего через соответствующие точки делений спрямленной окружности проведены образующие. При этом на каждой образующей отмечена ее точка встречи с плоскостью Р.

📸 Видео

Натуральный вид сечения и полная развёртка цилиндрической поверхностиСкачать

Натуральный вид сечения и полная развёртка цилиндрической поверхности

Построить сечение цилиндра с плоскостью общего положения.Скачать

Построить сечение цилиндра с плоскостью общего положения.

Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать

Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)

Развёртка цилиндраСкачать

Развёртка цилиндра

Начертательная геометрия_18_Сечение цилиндра проецирующей плоскостьюСкачать

Начертательная геометрия_18_Сечение цилиндра проецирующей плоскостью

Сечение цилиндра плоскостьюСкачать

Сечение цилиндра плоскостью

Построение линии пересечения поверхности конуса с проецирующей плоскостьюСкачать

Построение линии пересечения поверхности конуса с проецирующей плоскостью

усеченный цилиндр-ортогональные проекции-изометрия-разверткаСкачать

усеченный цилиндр-ортогональные проекции-изометрия-развертка

Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Усеченный цилиндр: проекции сечения, изометрия, развертка поверхностиСкачать

Усеченный цилиндр: проекции сечения, изометрия, развертка поверхности

Лекция #13Скачать

Лекция #13

2 6 1 сечение конуса плоскостьюСкачать

2 6 1 сечение конуса плоскостью

Построение линии пересечения поверхности пирамиды с проецирующей плоскостьюСкачать

Построение линии пересечения поверхности пирамиды с проецирующей плоскостью

Лаб. работа 6. Построение сечения прямого кругового цилиндра фронтально-проецирующей плоскостьюСкачать

Лаб. работа 6. Построение сечения прямого кругового цилиндра фронтально-проецирующей плоскостью

Цилиндр с вырезомСкачать

Цилиндр с вырезом
Поделиться или сохранить к себе:
Технарь знаток