- Система охлаждения двигателя внутреннего сгорания: как это работает
- Функции системы охлаждения двигателя автомобиля
- Виды систем охлаждения двигателя
- Жидкостная система охлаждения
- Комбинированная (гибридная) система охлаждения
- Устройство жидкостной системы охлаждения двигателя
- Принцип работы жидкостной (гибридной) системы охлаждения автомобиля
- Воздушная система охлаждения
- Виды цилиндров в зависимости от охлаждения двс
- 🌟 Видео
Видео:СИСТЕМА ОХЛАЖДЕНИЯ ДВИГАТЕЛЯ "Азиатский" и "Европейский" вариантыСкачать
Система охлаждения двигателя внутреннего сгорания: как это работает
Назначение системы охлаждения двигателя внутреннего сгорания состоит в отводе тепла от нагретых деталей мотора с помощью охлажденной среды (жидкости, газа или того и другого вместе) для сохранения рабочего диапазона температур двигателя и защиты его от перегрева независимо от условий эксплуатации. Как устроена система охлаждения, какие её виды бывают и в чем заключается принцип работы подробно разобрано в этой статье.
Видео:система охлажденияСкачать
Функции системы охлаждения двигателя автомобиля
Помимо основной функции в виде отвода тепла от мотора, система охлаждения двигателя (сокращенно СОД) выполняет и другие задачи:
- Охлаждения смазывающих жидкостей в автоматических коробках передач;
- Охлаждения выхлопных газов в системе рециркуляции отработавших газов;
- Охлаждения воздуха в системе турбонаддува;
- Охлаждения систем смазки двигателя;
- Нагрева воздуха в системе отопления и кондиционирования.
Выход из строя или низкая эффективность работы системы охлаждения ведет к повышенному износу и выходу из строя двигателя деталей двигателя. Рабочая температура современных бензиновых двигателей составляет 100-120°C (или 70-90°C для дизельных моторов), а с учетом облегченных конструкций нынешних моторов и увеличенной мощностью по отношению к объему даже кратковременный перегрев гарантирует мгновенную или очень скорую поломку двигателя. Поэтому правильная работа системы охлаждения в современных автомобилях является гарантом работоспособности и ресурса силовой установки.
Видео:Жидкостные системы охлаждения ДВС, классические схемы и экспериментальныеСкачать
Виды систем охлаждения двигателя
Системы охлаждения двигателей внутреннего сгорания делятся на три основных типа: жидкостные (водяные), воздушные и гибридные (комбинированные — для охлаждения используется и воздух и жидкость).
Жидкостная система охлаждения
Жидкостные системы охлаждения делятся на несколько типов — замкнутого, не замкнутого и открытого типа. В системах незамкнутого жидкостного охлаждения охлаждающая жидкость (сокращенно ОЖ) подается извне, отводит тепло от его источника и направляется во внешнюю среду. Например, для охлаждения режущего инструмента подается поток смазки, поступающий самотеком в маслосборники. В открытых системах жидкостного охлаждения нагревательный элемент расположен в объеме теплоносителя, а тот в свою очередь помещен в охладитель. Системы открытого типа применяют, например, для охлаждения трансформаторов. В автомобилях используются только системы замкнутого жидкостного охлаждения, когда жидкая среда находится в герметичном контуре.
Для ускорения теплообмена дополнительно к замкнутой жидкостной системе может подключаться воздушная — такая связка широко применяется в автомобилестроении и называется комбинированной (или гибридной) системой охлаждения.
Комбинированная (гибридная) система охлаждения
По герметичному жидкостному контуру принудительно циркулирует жидкость, которая нагревается в рубашке охлаждения двигателя и остывает в радиаторе охлаждения. Дополнительно рядом с радиатором установлен вентилятор, который включается при повышении температуры охлаждающей жидкости выше заданного значения. Такая система применяется на абсолютном большинстве современных автомобилей.
В качестве охлаждающей жидкости сегодня чаще всего применяется антифриз — специальная жидкость на основе этиленгликоля, которая не замерзает при низких температурах (в народе называют «незамерзайка»). Ранее использовали простую воду. В СССР распространение получили антифризы марки Тосол, под которой выпускался целый ряд технических жидкостей для автомобилей. Охлаждающие жидкости этого бренда под названиями «Тосол-А» и «Тосол-АМ» были так популярны, что слово «тосол» стало народным синонимом «антифризу».
Принципиальная схема охлаждения одинаковая как для бензиновых, так и дизельных двигателей. В этой статье мы рассмотрим общую схему, которая актуальна для обоих видов моторов. Порядок расположения элементов может отличаться от автомобиля к автомобилю, но основные компоненты, обеспечивающие правильную работу системы охлаждения — одинаковые.
Устройство жидкостной системы охлаждения двигателя
Радиатор охлаждения (1):
Радиатор охлаждения автомобиля (или воздушный теплообменник) служит для рассеивания тепла в атмосферу. Состоит из трубок, по которым циркулирует антифриз, и большого количества пластин (рёбер), которые увеличивают поверхность для ускорения теплообмена. Радиаторы изготавливаются из легко проводящих тепло материалов — медь (трубки) и алюминий (пластины). Радиаторы с медными трубками более долговечны, однако с целью удешевления их часто делают алюминиевыми, что сказывается на долговечности. Иногда эти теплообменники комплектуется пробкой радиатора (воздушным клапаном), выполняющим ту же функцию, что и крышка расширительного бачка.
Вентилятор (2):
Вентилятор радиатора — создает мощный поток воздуха, ускоряя охлаждение радиатора (при движении на малой скорости, в жаркую погоду, в пробках и т.д.). В современных автомобилях работает от электродвигателя и имеет несколько скоростей вращения, которые автоматически выбирает и включает бортовой компьютер, используя показания датчиков температуры. При включении кондиционера вентилятор радиатора включается принудительно на максимальной скорости и работает постоянно.
Водяной насос (3):
Водяной насос, или жидкостной насос, или помпа — отвечает за циркуляцию охлаждающей жидкости в системе. Приводится в движение ременной передачей от вала двигателя (чаще) или от электродвигателя (реже). В связи со сложными условиями работы является расходным элементом — по регламенту меняется вместе с ремнем газораспределительного механизма (ГРМ) и роликами. На двигателях с цепной системой газораспределения автопроизводители рекомендуют менять жидкостной насос каждые 90 000 километров пробега.
Термостат (4):
Термостат — в системах охлаждения автомобиля регулирует движение охлаждающей жидкости (по малому или большому кругу) с целью ускорения прогрева двигателя и поддержания оптимальной температуры его работы. Когда мотор не прогрет до рабочей температуры термостат закрыт и жидкость движется только по малому кругу (рубашка охлаждения мотора и радиатор отопителя салона), после прогрева термостат открывается, и жидкость движется по большому кругу (через радиатор охлаждения). Термостат состоит из штока, клапана, пружины и баллона с термочувствительной жидкостью (термобаллона). Под воздействием температуры жидкость в баллоне расширяется и преодолевает сопротивление пружины, открывая тем самым клапан.
Вентилятор отопителя (5):
Вентилятор отопителя — прогоняет очищенный от крупных частиц салонным фильтром уличный воздух через радиатор отопителя, тем самым снимает с него тепло, которое далее идет по воздуховодам и подается в салон. На машинах с кондиционером этот же вентилятор обдувает испаритель, снимая с него холод. Состоит из электродвигателя, крыльчатки и корпуса. Обычно располагается в салоне автомобиля — непосредственно в системе воздуховодов, реже — за моторным щитом.
Читайте также: Замена рабочего цилиндра сцепления газель бизнес камминз
Радиатор отопителя (6):
Радиатор отопителя, или печка — обычный теплообменник (конденсатор), который служит для отвода тепла в салон автомобиля. Устройство, схема подключения и принцип работы аналогичны основному радиатору. Главное отличие — радиатор отопителя меньше. Теплообменник постоянно нагрет, поскольку напрямую подключен к системе охлаждения автомобиля. Съем тепла с него осуществляется вентилятором — если он выключен, или перекрыта заслонка конденсатора (салонной печки) — в салон тепло попадать не будет.
Расширительный бачок (7):
Расширительный бачок предназначен для хранения излишков охлаждающей жидкости (антифриза), которые возникают в результате расширения этой жидкости в процессе нагрева. В автомобилях используют расширительные бачки открытого типа — закрывающая их крышка одновременно является клапаном (в некоторых автомобилях это просто крышка, а клапан находится на радиаторе), который поддерживает избыточное давление охлаждающей жидкости. Бачки делают из полупрозрачного пластика (для удобства контроля уровня жидкости) и располагают их в верхней точке системы охлаждения с целью недопущения появления воздушных пробок.
Все элементы соединены в замкнутый контур посредством патрубков (шлангов), отводов и втулок. Немаловажную роль в корректной работе системы охлаждения играет датчик температуры охлаждающей жидкости, обычно их ставят два — один дает показания на приборную панель, другой передает данные бортовому компьютеру. На основании температуры, например, может меняться состав топливовоздушной смеси, включаться или выключаться повышенные (прогревочные) обороты и вентилятор охлаждения.
Также часто в систему охлаждения мотора, особенно мощных двигателей, входит масляный радиатор (в основном это жидкостно-масляный теплообменник), который охлаждает моторное масло до температуры близкой к температуре ОЖ.
Принцип работы жидкостной (гибридной) системы охлаждения автомобиля
В каналы блока и головки цилиндров (так называемую рубашку охлаждения) подается жидкость с помощью водяного насоса (помпы). Жидкость забирает на себя часть тепла от двигателя и охлаждается в радиаторе. В системе охлаждения есть два круга обращения охлаждающей среды — малый и большой. Выбор пути регулируется термостатом — на «холодную» жидкость движется только по рубашке охлаждения (малый круг, иногда в него входит и радиатор отопителя) не попадая в радиатор, что ускоряет выход мотора на рабочую температуру.
Схема системы охлаждения двигателя
С повышением температуры жидкости в системе (отслеживается датчиками температуры) — термостат начинает приоткрывать путь на для жидкости на большой круг, в котором задействованы все элементы системы охлаждения как на приведенной выше схеме. Чем выше температура жидкости — тем сильнее открыт термостат. Если при максимальном открытии термостата температура продолжает расти и достигает определенного значения — включается вентилятор охлаждения радиатора, который ускоряет охлаждения жидкости.
Воздушная система охлаждения
Воздушные системы в свою очередь делятся на два типа — естественного и принудительного охлаждения. Естественная система воздушного охлаждения является наиболее примитивным вариантом — отвод тепла осуществляется с помощью оребрения на поверхности цилиндров (как на радиаторах воздушного охлаждения). Однако простота конструкции в купе с низкой теплоёмкостью воздуха создает ряд ограничений и проблем:
- Невозможность применения на компактных и мощных двигателях из-за слабого отвода тепла;
- Неравномерное охлаждение и как следствие необходимость решения проблем локального перегрева ДВС, в частности увеличивать поверхность оребрения в местах аэродинамической тени, располагать более горячие выпускные клапана «лицом» к потоку воздуха;
- Необходимость не допускать сильного загрязнения пластин охлаждения, поскольку из-за этого сильно падает эффективность отвода тепла.
На сегодняшний день воздушное охлаждение естественно типа еще можно встретить на мотоциклах, мопедах и авиатехнике. На легковых автомобилях уже не применяется, на мототехнике вытесняется жидкостным охлаждением из-за возросшей форсировки моторов.
Двигатель Yamaha XVS950A
Принудительная система воздушного охлаждения применяется в стационарных объектах и технике, доступ воздуха к двигателю которой ограничен в следствие наличия капота или иных элементов на пути воздушного потока. В этом случае обдув двигателя осуществляется с помощью вентилятора. Конструкция по сравнению с системами естественного воздушного охлаждения усложнена только наличием вентилятора и тоже относится к простым. Также очевидным плюсом такой системы является отсутствие охлаждающей жидкости, как собственно и системы для ее циркуляции. Минусы: большие габариты двигателя, низкая эффективность охлаждения, высокий уровень шума от вентилятора. Как и у естественного воздушного охлаждения есть проблемы с неравномерным обдувом.
Самая известная машина с принудительной системой воздушного охлаждения — «Запорожец». Такого же типа охлаждение ставили на моторы моделей Volkswagen Kafer, Fiat 500, Citroen 2CV, Tatra 613. Volkswagen Type 2. В современных автомобилях принудительная система воздушного охлаждения не применяется. Но иногда умельцы реставрируют старые автомобили с двигателями с таким охлаждением. Например, вот экземпляр восстановленного Porsche 911 с четырехлитровым мотором с воздушным охлаждением (форсированный до 390 л.с и конструктивно доработанный):
Двигатель Porsche 911 с воздушным охлаждением
На этом знакомство с системой охлаждения двигателей автомобилей окончено. Типовые неисправности и поломки таких систем — тема для отдельной статьи. Если остались вопросы — не стесняйтесь, задавайте.
Видео:Система охлаждения двигателя автомобиля. Общее устройство. 3D анимация.Скачать
Виды цилиндров в зависимости от охлаждения двс
В зависимости от вида топлива и особенностей конструкции поршневые ДВС делятся на бензиновые и дизельные.
Бензиновый двигатель | Дизельный двигатель |
---|---|
На легковых автомобилях наибольшее распространение получил бензиновый ДВС. Он работает только на бензине с различным октановым числом. Предварительно сжатая в цилиндре топливно-воздушная смесь воспламеняется с помощью искры, подаваемой свечой зажигания. Управление мощностью осуществляется дроссельной заслонкой, регулирующей поток воздуха. КПД бензинового мотора составляет около 20-30%, но такой двигатель может работать на высоких оборотах и имеет большую удельную мощность. Показатели давления и температуры в цилиндрах у бензинового ДВС меньше, чем у дизельного, а в выхлопе содержится меньше серы, сажи и токсичных газов, но больше окиси углерода. | Дизельные двигатели стали массово использоваться на легковых автомобилях только в конце XX века. КПД у дизельного мотора выше, чем у бензинового (40-45%), при этом в качестве топлива могут выступать низкосортные продукты нефтепереработки или даже растительные масла. Принцип работы дизельного ДВС заключается в самовоспламенении топливной смеси в цилиндре от сжатия, при высоких давлении и температуре. Это требует более прочной конструкции и защиты от высоких температур, зато у дизельного силового агрегата отсутствуют свечи зажигания, а смесеобразование и сгорание проходят быстрее, чем в бензиновом. Мощность регулируется не дроссельной заслонкой, а непосредственно интенсивностью впрыска топлива в цилиндры. К недостаткам дизельного двигателя относятся дорогой ремонт, необходимость использования более мощного стартера, характерный стук при работе и застывание летнего дизельного топлива на морозе. |
Читайте также: Ремонт блока цилиндров фольксваген
В зависимости от количества тактов в рабочем цикле различают двухтактные и четырёхтактные двигатели внутреннего сгорания. Особое место в этой классификации занимает роторно-поршневой двигатель Ванкеля, который не относится к поршневым ДВС, но по сути является четырёхтактным.
При первом такте (сжатия) поршень перемещается от нижней мёртвой точки к верхней, перекрывая нижнее и верхнее продувочные окна и сжимая поступившую ранее топливную смесь. Одновременно в кривошипную камеру, расположенную в нижней части цилиндра, вследствие её герметичности поступает новая топливная смесь. При втором такте (рабочего хода) сжатая горючая смесь воспламеняется искрой от свечи зажигания, в результате чего поршень под давлением движется к нижней мёртвой точки, вращая коленчатый вал и сжимая смесь в кривошипной камере. Из последней топливная смесь через открытое впускное окно заполняет цилиндр, вытесняя отработавшие газы через выпускное окно (продувка). Далее поршень снова поднимается вверх, и цикл повторяется.
Преимущества двухтактного двигателя заключается в том, что он проще по конструкции, чем четырёхтактный, и даёт примерно в 1,5 раз больше мощности при том же рабочем объёме. Однако в наше время двухтактные ДВС практически не используются из-за низкой экономичности и плохих экологических показателей, связанных с неполным сгоранием топливно-воздушной смеси и попадании части её в выпускное окно при продувке.
- Впуск — по мере движения поршня к нижней мёртвой точке цилиндр наполняется топливно-воздушной смесью через открытый впускной клапан.
- Сжатие — впускной и выпускной клапаны закрыты; поршень поднимается вверх, сжимая топливную смесь, в результате чего в цилиндре повышаются температура и давление.
- Рабочий ход — при достижении поршнем верхней мёртвой точки топливо воспламеняется искрой от свечи зажигания (в бензиновом ДВС) или от давления (в дизельном ДВС) и образует большое количество насыщенных энергией газов, которые давят на поршень и заставляют его двигаться вниз.
- Выпуск — поршень снова поднимается вверх и через открытый выпускной клапан вытесняет выхлопные газы, которые и очищают цилиндр.
Роторно-поршневой мотор обладает рядом преимуществ перед традиционным, так как развивает больше мощности при меньшем объёме, имеет небольшие габариты и относительно простую конструкцию. К недостаткам двигателя Ванкеля относятся быстрый износ уплотнителей между ротором и камерой сгорания, требование высокой точности при сборке деталей, необходимость специальной системы смазки, склонность к перегреву и неэкономичность на низких оборотах.
Газотурбинный двигатель (ГТД) может работать на любом топливе, от керосина до мазута, и всегда имеет бОльшую удельную мощность, чем поршневой ДВС, хотя КПД у него ниже. По компактности, весу, шуму и вибрациям ГТД значительно лучше поршневого ДВС, но из-за таких факторов, как высокая стоимость (объясняется необходимостью использования жаростойких материалов), большая частота оборотов (до 100000 об/мин), высокая температура выхлопа и задержка отклика на управление мощностью (невозможность снижения оборотов при отпущенной педали газа без торможения), он так и не нашёл применения на легковых автомобилях, за исключением нескольких концепт-каров.
По конфигурации, то есть взаимному расположению цилиндров, автомобильные двигатели бывают:
- Рядные — цилиндры расположены на одной линии, а их поршни вращают один коленчатый вал. Такие двигатели более простые по конструкции, надёжные и удобные в обслуживании, чем V-образные. Могут иметь как чётное (2, 4, 6 или 8), так и нечётное (3 или 5) количество цилиндров. В наше время наиболее распространёнными являются рядные 4-цилиндровые моторы, а 6-цилиндровые постепенно выходят из употребления, подобно тому, как в послевоенные годы перестали использоваться рядные 8-цилиндровые двигатели. Это связано с большой длиной блока цилиндров и коленчатого вала, требующей много места под капотом, а также быстрым износом. Существует и такой вариант конфигурации, как U-образный двигатель, который состоит из двух установленных параллельно рядных блоков с отдельными коленчатыми валами, соединёнными цепью или шестерней.
- V-образные — цилиндры расположены один напротив другого под углом от 10° до 120°. Мотор состоит из двух блоков цилиндров, немного смещённых относительно друг друга и соединённых общим коленчатым валом. V-образные двигатели имеют только чётное количество цилиндров (2, 4, 6, 8, 10, 12 или 16). Как правило, такие двигатели более компактные и сбалансированные, чем рядные, и обеспечивают больше мощности. Разновидностью V-образной конфигурации являются моторы Volkswagen VR5 и VR6, состоящие из двух блоков цилиндров, установленных близко друг другу под углом 10°-15° и соединённых общей головкой. Такая конфигурация совмещает в себе преимущества рядных и V-образных двигателей.
- Оппозитные, или плоские, — цилиндры расположены в двух блоках с углом развала 180°, то есть горизонтально один напротив другого. Двигатель имеет плоскую форму и обычно применяется в заднемоторных автомобилях.
- W-образные — цилиндры расположены в трёх или четырёх параллельных блоках и соединены общим коленчатым валом. В наше время W-образные двигатели, полученные в результате соединения двух моторов конфигурации VR, использует только компания Volkswagen.
- Радиальные, или звездообразные, — цилиндры расположены радиальными лучами вокруг коленчатого вала через равные углы, обычно в один ряд. Такие двигатели широко применяются в авиации, а на автомобилях встречаются крайне редко.
Двигатели также различаются по количеству цилиндров:
- 1-цилиндровый — простейшая разновидность поршневого ДВЗ, состоящая из одного цилиндра. Исторически самый первый, но несбалансированный и наименее эффективный вид силового агрегата. Применялся на ранних мотоколясках и на микроавтомобилях.
- 2-цилиндровый — как и 1-цилиндровый, встречается чаще в 2-тактном варианте, поскольку 4-тактные моторы такого типа не обеспечивают плавности хода. Бывает трёх конфигураций: рядный, V2 и F2. Устанавливался на микрокары и автомобили конца XIX — начала XX века.
- 3-цилиндровый — из-за нечётного количества цилиндров также является несбалансированным и бывает только рядным. 3-цилиндровые моторы небольшого объёма (до 1.2 л) ставятся на некоторые из современных малолитражек.
- 4-цилиндровый — самый распространённый и выгодный в производстве двигатель, подходящий для любого автомобиля относительно небольших размеров. Конструкция рядного 4-цилиндрового мотора несбалансированная, но при небольшом объёме не требует дополнительного балансировочного вала. Объём современных 4-цилиндровых двигателей составляет от 0.7 до 2.3 л, хотя раньше встречались и гораздо большие агрегаты. Относительно редкими являются конфигурации V4 и F4, которые применялись в некоторых заднемоторных автомобилях и отличались повышенной шумностью.
- 5-цилиндровый — впервые появился на Mercedes-Benz в середине 70-х гг., но до сих пор встречается нечасто. Несбалансированный и дорогой в производстве, поскольку не может быть унифицирован с 4-х или 6-цилиндровыми моторами. Бывает рядный или конфигурации VR.
- 6-цилиндровый — исторически наиболее распространённый в рядной конфигурации, которая отличается сбалансированностью и плавностью работы, на автомобилях среднего или высшего класса. Однако из-за большой длины и трудностью поперечной установки такие двигатели постепенно уходят в прошлое. Сейчас чаще используются моторы V6, несбалансированные, но более компактные и пригодные для переднеприводной компоновки. Оппозитные 6-цилиндровые двигатели ставятся на Porsche 911.
- 8-цилиндровый — в рядной конфигурации, несмотря на большую длину блока, является сбалансированным и создаёт минимум вибраций, но, как правило, ограничен в максимальных оборотах из-за риска деформации коленчатого вала. Использовался только в довоенные годы на люксовых автомобилях, в отличие от мотора V8, который применялся на машинах разных ценовых категорий, особенно в США, а сейчас чаще всего встречается на внедорожниках и спортивных моделях. Преимущества двигателя V8 заключаются в относительной компактности и высокой производительности, недостатки — в несбалансированности и высоких показателях расхода топлива при большом объёме.
- 10-цилиндровый — на автомобилях бывает только V-образным, получается в результате соединения двух рядных 5-цилиндровых моторов или добавления к V8 дополнительной пары цилиндров. Устанавливается на спорткары или полноразмерные пикапы.
- 12-цилиндровый — в V-образной конфигурации состоит из двух рядных 6-цилиндровых блоков или двух моторов V6, конструкция полностью сбалансированная. Двигатель V12 часто использовался на роскошных довоенных автомобилях, а сегодня встречается на многих суперкарах. Бывает и в варианте W12 из трёх 4-цилиндровых или четырёх 3-цилиндровых блоков, крайне редко — в оппозитной конфигурации.
- 16-цилиндровый — V-образный встречается на автомобилях в исключительных случаях: на довоенных моделях Cadillac, Marmon и Peerless, а также на некоторых гоночных болидах. Прекрасно сбалансированный и практически бесшумный, но слишком длинный и дорогой в производстве. Двигатель W16, состоящий из двух блоков VR6, имеет только один серийный автомобиль — Bugatti Veyron.
- 18-цилиндровый — в конфигурации W18 из трёх рядных 6-цилиндровых блоков под углом 60° использовался на нескольких прототипах Bugatti в конце 90-х гг.
Тип двигателя | Устройство | Пример | |
---|---|---|---|
Рядный | 2-цилиндровый | ||
3-цилиндровый | |||
4-цилиндровый | |||
5-цилиндровый | |||
6-цилиндровый | |||
8-цилиндровый | |||
V-образный | 2-цилиндровый | ||
4-цилиндровый | |||
6-цилиндровый | |||
8-цилиндровый | |||
10-цилиндровый | |||
12-цилиндровый | |||
16-цилиндровый | |||
Оппозитный | 2-цилиндровый | ||
4-цилиндровый | |||
6-цилиндровый | |||
8-цилиндровый | |||
12-цилиндровый | |||
16-цилиндровый | |||
W-образный | 6-цилиндровый | ||
8-цилиндровый | |||
12-цилиндровый | |||
16-цилиндровый | |||
18-цилиндровый | |||
Радиальный | 6-цилиндровый | ||
8-цилиндровый | |||
12-цилиндровый | |||
16-цилиндровый |
В зависимости от типа ГРМ различают нижнеклапанные и верхнеклапанные двигатели внутреннего сгорания.
Разновидностью нижнеклапанного типа ГРМ является схема T-head, когда впускные клапаны расположены с одной стороны блока цилиндров, а выпускные — с другой, при этом распределительных вала два. Также существовали двигатели со смешанным расположением клапанов (F-head), с верхними впускными, боковыми выпускными клапанами и одним распредвалом в блоке.
🌟 Видео
Винница - рулит. SabTab - технология микроремонта.Скачать
#ПРОСТОЙ СПОСОБ по доработке системы охлаждения двс!!!Скачать
Система смазки автомобильного двигателя.Скачать
ДЕТАЛИ СИСТЕМЫ ОХЛАЖДЕНИЯ ПОСЛЕ КАЧЕСТВЕННОГО И НЕКАЧЕСТВЕННОГО АНТИФРИЗАСкачать
ГРОБЯТ МОТОРЫ ЭКОНОМИЕЙ на МАСЛЕ #гбцСкачать
Охлаждение мотора - ЛАЙФХАКСкачать
Диагностика системы охлаждения. Проверь на герметичность!Скачать
Как открутить скрученный болт? Есть решение...Скачать
РАДИАТОР ПРИНЦИП РАБОТЫСкачать
Как проверить прокладку ГБЦ 100вариантСкачать
сняли двс для регулировки зазоров клапанов 2uzСкачать
Опрессовка после 1 мин прогреваСкачать
Антифриз попал в двигательСкачать
ГАЗЕЛЬ ГБЦ прогиб #авторемонтСкачать