Внешний авторитет регулирующего клапана

Авто помощник

Пропускная способность регулирующего клапана Kvs — значение коэффициента пропускной способности Kvs численно равно расходу воды через клапан в м³/ч с температурой 20°C при котором потери давления на нём составят 1бар. Расчёт пропускной способности регулирующего клапана под конкретные параметры системы вы можете выполнить в разделе сайта Расчёты.

DN регулирующего клапана — номинальный диаметр отверстия в присоединительных патрубках. Значение DN применяется для унификации типоразмеров трубопроводной арматуры. Фактический диаметр отверстия может незначительно отличаться от номинального в большую или меньшую сторону. Альтернативным обозначением номинального диаметра DN, распространённым в странах постсоветского пространства, был условный диаметр Ду регулирующего клапана. Ряд условных проходов DN трубопроводной арматуры регламентирован ГОСТ 28338-89 «Проходы условные (размеры номинальные)».

PN регулирующего клапана — номинальное давление — наибольшее избыточное давление рабочей среды с температурой 20°C, при котором обеспечивается длительная и безопасная эксплуатация. Альтернативным обозначением номинального давления PN, распространённым в странах постсоветского пространства, было условное давление Ру клапана. Ряд номинальных давлений PN трубопроводной арматуры регламентирован ГОСТ 26349-84 «Давления номинальные (условные)».

Динамический диапазон регулирования, это отношение наибольшей пропускной способности регулирующего клапана при полностью открытом затворе (Kvs) к наименьшей пропускной способности (Kv), при которой сохраняется заявленная расходная характеристика. Динамический диапазон регулирования ещё называют регулирующим отношением.

Так, например, динамический диапазон регулирования клапана равный 50:1 при Kvs 100, означает, что клапан может управлять расходом в 2м³/ч, сохраняя зависимости присущие его расходной характеристике.

Большинство регулирующих клапанов обладают динамическими диапазонами регулирования 30:1 и 50:1, но существуют и клапаны с очень хорошими регулирующими свойствами, их диапазон регулирования равен 100:1.

Авторитет регулирующего клапана — характеризует регулирующую способность клапана. Численно значение авторитета равно отношению потерь давления на полностью открытом затворе клапана к потерям давления на регулируемом участке.

Чем ниже авторитет регулирующего клапана, тем сильнее его расходная характеристика отклоняется от идеальной и тем менее плавным будет изменение расхода при движении штока. Так, например, в системе управляемой клапаном с линейной расходной характеристикой и низким авторитетом — закрытие проходного сечения на 50% может уменьшить расход всего лишь на 10%, при высоком же авторитете закрытие на 50% должно снижать расход через клапан на 40-50%.

Рекомендуется терять на регулирующем клапане с линейной характеристикой не менее 50% располагаемого напора на участке, а на клапане с логарифмической характеристикой не менее 10%.

Внешний авторитет регулирующего клапана

Расходная характеристика регулирующего клапана отображает зависимость изменения относительного расхода через клапан от изменения относительного хода штока регулирующего клапана при постоянном перепаде давления на нём.

Линейная расходная характеристика — одинаковые приросты относительного хода штока вызывают одинаковые приросты относительного расхода. Регулирующие клапаны с линейной расходной характеристикой применяются в системах, где существует прямая зависимость между управляемой величиной и расходом среды. Регулирующие клапаны с линейной расходной характеристикой идеально подходят для поддержания температуры смеси теплоносителя в тепловых пунктах с зависимым подключением к тепловой сети.

Равнопроцентная расходная характеристика (логарифмическая) — зависимость относительного прироста расхода от относительного прироста хода штока — логарифмическая. Регулирующие клапана с логарифмической расходной характеристикой применяются в системах, где управляемая величина нелинейно зависит от расхода через регулирующий клапан. Так, например, регулирующие клапаны с равнопроцентной расходной характеристикой рекомендуется применять в системах отопления для регулирования теплоотдачи отопительных приборов, которая нелинейно зависит от расхода теплоносителя. Регулирующие клапана с логарифмической расходной характеристикой отлично регулируют теплоотдачу скоростных теплообменных аппаратов с низким перепадом температур теплоносителя. Рекомендуется применять клапана с равнопроцентной расходной характеристикой в системах где требуется регулирование по линейной расходной характеристике, а поддерживать высокий авторитет на регулирующем клапане нет возможности. В таком случае сниженный авторитет искажает равнопроцентную характеристику клапана приближая её к линейной. Такая особенность наблюдается при авторитетах регулирующих клапанов не ниже чем 0,3.

Параболическая расходная характеристика — зависимость относительного прироста расхода от относительного хода штока подчиняется квадратичному закону (проходит по параболе). Регулирующие клапаны с параболической расходной характеристикой применяются как компромисс между клапанами с линейной и равнопроцентной характеристиками.

Читайте также: Как выгнать воздух из системы охлаждения ваз приора 16 клапанов

Видео:Типы регулирующих клапановСкачать

Типы регулирующих клапанов

Внешний авторитет регулирующего клапана

Внешний авторитет регулирующего клапана

Группа: Участники форума
Сообщений: 63
Регистрация: 1.3.2005
Из: Киев
Пользователь №: 504

Внешний авторитет регулирующего клапана

Группа: Участники форума
Сообщений: 831
Регистрация: 24.4.2006
Из: г.Новосибирск
Пользователь №: 2710

Внешний авторитет регулирующего клапана

Группа: Участники форума
Сообщений: 63
Регистрация: 1.3.2005
Из: Киев
Пользователь №: 504

Но как-то все туманно в голове.
Когда это авторитет маленький — это плохо. Как сделать его больше мне толком никто не может объяснить. Попутно, при поиске инфы, познакомился с довольно бестолковыми технарями в местных представительствах производителей трубопроводной арматуры и бестактными секретаршами.

Впервые столкнулся при использовании программки RAUCAD от REHAU при расчете системы холодоснабжения.

Внешний авторитет регулирующего клапана

Группа: Участники форума
Сообщений: 831
Регистрация: 24.4.2006
Из: г.Новосибирск
Пользователь №: 2710

Есть регулируемый участок-где нужно регулировать (расход), он вкл.:
клапан+ нагрузка
Есть располагаемый (Р1-Р2)напор перед рег. участком
Так вот:
Авторитет клапана-отношение падения давления на полностью открытом клапане к располагаемому напору (1)
Что-бы клапан мог-бы «лучше» регулировать расход на нем должно падать большая часть(половина, например) располагаемого напора.
(Аналогия: Если директор фирмы с оборотом в 1млн.руб «контролирует» :
10тыс, то его «авторитет»=10тыс/1млн=0,01
100 тыс, то его «авторитет»=100тыс/1млн=0,1
700 тыс, то его «авторитет» =700тыс/1млн=0,7
. Это понятно?)
Так и гидравликой- на каком элементе падает больше давления- тот и контролирует(определяет) расход.
Что значит «лучше» регулировать?
У клапана есть расходная характеристика, зависимость G=f(h), h-ход затвора клапана
Так вот, если авторитет мал, то расходная характеристка клапана деформируется(искажается)-причудливо выгибается, ухудшая качество регулирования. Это может возникнуть когда клапан выбран с большим запасом -мало отношение (1), в этом случае часть хода затвора вообще не нужна и затвор клапана будет «болтаться» в почти закрытом положении, превращаясь в двухпозиционный элемент: закрыто или открыто.
Теплоотдача радиатора имеет степенную зависимость, чтобы обеспечить линейное регулирование расходную характеристику клапана «делают»-логарифмической(т.е. инверсной- «наоборот»)
Подбор клапана- по расчету Kv
Еще раз обращаю Ваше внимание-почитайте книги Пыркова В.В. на форуме.

Сообщение отредактировал zr84 — 10.8.2007, 4:35

Внешний авторитет регулирующего клапана

Группа: Участники форума
Сообщений: 63
Регистрация: 1.3.2005
Из: Киев
Пользователь №: 504

Спасибо, немного прояснилось.

Еще один вопрос. Пользуюсь программой расчтеа сетей теплоснабжения RAUCAD от REHAU. Она расставила балансировочные клапаны, но часть из них подобрала в полностью открытом положении. При этом значение «авторитета» в пределах допустимого. Оставить как есть, или думать что-то другое?

Внешний авторитет регулирующего клапана

Группа: Участники форума
Сообщений: 200
Регистрация: 24.1.2007
Пользователь №: 5676

Видео:09. Что такое авторитет вентиля (клапана) в системе отопления?Скачать

09. Что такое авторитет вентиля (клапана) в системе отопления?

Внешний авторитет клапана

Регулирование теплоносителя через клапан зависит как от его про­пускной способности, так и от участка системы, на котором клапан вызы­вает изменение давления теплоносителя. Этот участок называют регули­руемым. Он включает трубопроводы с установленными приборами и оборудованием. За пределами участка перепад давления остается неиз­менным или колеблется не более чем на ±10 %. В системе обеспечения микроклимата таким участком является либо вся система, либо ее часть, в которой автоматически поддерживается постоянный перепад давления. Схематическое изображение регулируемого участка показано на рис. 3.1.

Через регулируемый участок проходит весь теплоноситель либо его часть, на которую воздействует регулирующий клапан. При изменении расхода теплоносителя происходит перераспределение располагаемого давления между конструктивными элементами участка, в том числе и регулирующим клапаном. По мере открывания клапана на нем умень­шается гидравлическое сопротивление, что приводит, в свою очередь, к увеличению перепада давления на остальных элементах участка из-за

Рис. 3.1. Схема регулируемого участка: 7 — полаюшая магистраль; 2 — терморегулятор; 3 — теплообменный прибор; 4 — регулирую­щий клапан; 5 — обратная магистраль

Увеличения расхода теплоносителя. Когда регулирующий клапан за­крывается, то в остальных элементах участка уменьшается падение дав­ления, поскольку расход стремится к нулю. Все располагаемое давление при этом теряется на клапане. Таким образом, гидравлические характе­ристики элементов участка оказывают влияние друг на друга в процес­се регулирования. Разность давления на клапане не постоянна. Она, как правило, не равна статической разности, по которой его подбирают при проектировании системы.

Читайте также: Дмрв ваз 2110 8 клапанов как восстановить

Потери давления на регулируемом участке обозначены через АР, на терморегуляторе — APh на регулирующем клапане — АР. Отношение потерь давления на максимально открытом терморегуляторе и на максимально открытом регулирующем клапане [20] к максимально воз­можному перепаду давления на регулируемом участке называют соот­ветственно авторитетом терморегулятора и авторитетом регулирую­щего клапана:

Иногда их называют внешними авторитетами [21] либо коэффициен­тами искажения идеальных характеристик [22], либо коэффициентами управления. Во всех случаях физическая суть параметров одинакова. Данные уравнения не совсем удобны для их практического применения, поскольку требуют знания максимального расхода теплоносителя в си­стеме, на клапане и терморегуляторе. В дальнейшем эти уравнения будут преобразованы и основываться на номинальном расходе теплоносителя, Который является расчетным параметром при проектировании систем.

Уравнение внешнего авторитета терморегулятора в двухтрубных системах имеет специфическую особенность. Она заключается в том, что авторитет определен с учетом потерь давления, создаваемых дроссе­лем (подробнее см. п. п. 4.2.4.4).

Гидравлический расчет систем по внешнему авторитету нагляден и прост в манипулировании потерями давления при уравновешивании
циркуляционных колец. Однако он не в полной мере отражает проис­ходящие гидравлические процессы. Тем не менее, находит широкое применение в компьютерных расчетах систем обеспечения микрокли­мата. При этом не уделяют должного внимания взаимовлиянию кла­панов на регулируемом участке. Такое упрощение в некоторой мере приемлемо для систем с постоянным гидравлическим режимом. В си­стемах с переменным гидравлическим режимом внешние авторитеты терморегуляторов и регулирующих клапанов изменяются. Происхо­дит искажение их гидравлических характеристик, поэтому для всех клапанов необходимо определять эффективную рабочую область по­терь давления, в которой отклонение параметров системы будет нахо­диться в контролируемых допустимых пределах.

Изменение внешних авторитетов терморегуляторов и регулирую­щих клапанов визуально можно проанализировать по графикам, пока­занным на рис. 3.2. График на рис. 3.2,а характеризует систему обеспе­чения микроклимата в расчетных условиях, при этом отсутствуют ка­кие-либо дополнительные автоматические устройства обеспечения эффективной работы терморегулятора. В процессе частичного закры­вания терморегулятора кривая 3 занимает положение кривой 4 на рис. 3.2,6. Возрастающие потери давления на регулируемом участке и АРт на терморегуляторе уменьшают соотношение между потерями давления АР,, и соответственно APvs на регулирующем клапане и по­терями давления АР на регулируемом участке. Следовательно, умень­шается авторитет регулирующего клапана.

С некоторым приближением происходит аналогичная работа систе­мы при закрывании части терморегуляторов. Тогда увеличиваются внешние авторитеты у остальных терморегуляторов. Учитывая, что тер­морегуляторы в процессе эксплуатации открываются относительно рас­четного положения кривой 3, могут быть получены противоположные результаты: увеличение внешних авторитетов регулирующих клапанов и уменьшение внешних авторитетов терморегуляторов. Таким образом, внешние авторитеты терморегуляторов и регулирующих клапанов явля­ются непостоянными, так как изменяется не только положение кривой 4, но и изменяется перепад давления на регулируемом участке. Макси­мальный перепад давления при этом может достигать напора насоса АРн, минимальный — будет характеризовать систему при полностью откры­тых терморегуляторах и находиться между точками пересечения кри­вых 3 и 2 с кривой 5. Некоторого ограничения авторитетов регулирующих клапанов и терморегуляторов в соответствии с графиком на рис. 3.2,в до­стигают установкой перепускных клапанов возле насоса: на байпасе меж­ду подающей и обратной магистралями. Лучшие результаты получают

Внешний авторитет регулирующего клапана

Рис. 3.2. Определение внешнего авторитета клапана в системе обеспе­чения микроклимата: а — при расчетных условиях; б — при частичном закрывании терморегулятора; в и г — то же, с уче­том влияния соответственно перепускного клапана и регуля­тора перепала лавления; 1 — характеристика сопротивления регулируемого участка без учета сопротивления терморегуля­тора и регулирующего клапана; 2 — характеристика регулиру­емого участка без учета сопротивления терморегулятора; 3 — характеристика сопротивления регулируемого участка при расчетных условиях; 4 — характеристика сопротивления регу­лируемого участка при частичном закрывании терморегулято­ра; 5 — характеристика нерегулируемого насоса; 6 — характе­ристика перепускного клапана; 7 — характеристика автомати­ческого регулятора перепала лавления

При установке регулятора перепада давления вместо перепускного кла­пана, что показано на рис. 3.2,г, либо клапана автоматического регулиро­вания расхода. Но даже в этих случаях не обеспечивается в полной мере стабилизация внешних авторитетов клапанов во всем диапазоне гидрав­лических колебаний системы. Так, при открывании терморегуляторов, характеризуемом приближением кривой 4 к кривой 2, рабочая точка си­стемы выходит за пределы прямых 6 и 7 и перемещается по кривой 5. Для обеспечения проектных значений внешних авторитетов клапанов во всем диапазоне гидравлического воздействия терморегуляторов, т. е. их открывании и закрывании, необходимо осуществить следующий шаг ав­томатизации системы: установить автоматические клапаны (перепуск­ные клапаны, автоматические регуляторы расхода, стабилизаторы рас­хода, автоматические регуляторы перепада давления) на стояках либо приборных ветках системы. Подробнее о совместной работе этого регу­лирующего оборудования см. в соответствующих разделах книги.

Читайте также: Клапан для заправки хладагента

Таким образом, для создания эффективной работы терморегуляторов, заключающейся в поддержании проектно заданных авторитетов клапа­нов, в системах обеспечения микроклимата необходимо применять допол­нительные автоматические регуляторы как возле насосов, так и на стояках либо горизонтальных приборных ветках. Определение внешних авторите­тов при этом зависит от конкретной схемы. Общим подходом является расчет внешнего авторитета клапана по автоматически поддерживаемому давлению АР ближайшим к регулируемому участку автоматическим регу­лятором. Наиболее часто встречающиеся схемы представлены на рис. 3.3.

На рис. 3.3,а…е показаны некоторые принципиальные схемы приме­нения автоматических клапанов для поддержания авторитетов термо­регуляторов и регулирующих клапанов на необходимом уровне. Эти схемы применяют для головного насоса, установленного возле котлов, чиллеров и т. д. Выбор конкретной схемы зависит от необходимости поддержания минимального расхода теплоносителя через теплообмен — ное оборудование или насосы.

Схему на рис. 3.3,а с автоматическим перепускным клапаном ис­пользуют для небольших систем с терморегуляторами. Байпас с этим клапаном обеспечивает примерно постоянный расход теплоносителя через теплообменник и насос. Однако такой подход нежелателен для систем, в которых недопустимо повышение температуры теплоноси­теля в обратном трубопроводе, например, при использовании конден­сационных котлов. Основными недостатками схемы являются не­обеспеченность проектных авторитетов клапанов при открывании терморегуляторов и примерная обеспеченность авторитетов при их закрывании (см. п. р. 5.1). Улучшение работы системы происходит при настройке перепускного клапана на 10 % выше перепада давления в точках присоединения байпаса при полностью открытых терморегу­ляторах, поскольку расчетный перепад давления соответствует час­тично открытым терморегуляторам (см. п. п. 4.2.4.2). Окончатель­ную настройку перепускного клапана осуществляют при наладке системы. Внешние авторитеты терморегуляторов и регулирующих клапанов при использовании данной схемы следует определять по максимальному перепаду давления ЛРтах в точках присоединения пе­репускного клапана (см. рис. 3.2,в). Максимальный расход через пе­репускной клапан устанавливают в зависимости от способа контроля системы: при температурном контроле — зачастую равным 60 % от максимального расхода системы; без температурного контроля — равным максимальному расходу системы.

Схему на рис. 3.3,6 применяют так же, как и предыдущую, в неболь­ших системах с терморегуляторами. Эту схему с постоянным расходом теплоносителя через бойлер называют антиконденсационным байпа­сом. Стабилизатор расхода гарантирует минимальный расход теплоно­сителя через байпас при закрытых терморегуляторах. Данный расход предназначен для срабатывания топливного клапана либо предохрани­тельного клапана контроля температуры высокотемпературных источ­ников теплоты, чтобы предотвратить перегрев теплоносителя от тепло­вой инерции теплообменника. Стабилизатор расхода по сравнению с перепускным клапаном равномернее поддерживает давление в систе­ме, улучшая тем самым работу терморегуляторов. Его, как и перепуск­ной клапан, настраивают на 10 % выше перепада давления в системе при полностью открытых терморегуляторах.

Схему на рис. 3.3,в применяют также для небольших систем. Она обеспечивает примерно постоянный расход теплоносителя через насос и не допускает, в отличие от предыдущих схем, перетоков теплоносите­ля из подающего трубопровода в обратный. Относительно обеспечения стабильности работы терморегуляторов данная схема имеет те же недо­статки, что и схема на рис. 3.3,а.

Схемы на рис. 3.3,г…е предназначены для систем обеспечения мик­роклимата любой сложности. Их выбор так же, как и предыдущих, зави­сит от типа контроля системы. Но во всех случаях применение автома­тических регуляторов перепада давления является наилучшим решени­ем работоспособности системы. При этом параметры эффективного регулирования определяются при проектировании, а не при наладке системы, как с перепускным клапаном.

Автоматическая стабилизация гидравлических параметров тепло­носителя возле насоса не всегда является достаточным условием

🔍 Видео

Video 20 Т-4 Авторитет регулирующего клапанаСкачать

Video 20 Т-4 Авторитет регулирующего клапана

Расчет характеристик регулирующего клапана КРСкачать

Расчет характеристик регулирующего клапана КР

Регулирующий клапан с пневмоприводомСкачать

Регулирующий клапан с пневмоприводом

Клапана регулирующиеСкачать

Клапана регулирующие

Комбинированное регулирование температуры независимых потребителейСкачать

Комбинированное регулирование температуры независимых потребителей

Как это работает: регулирующий клапан SpiraTrolСкачать

Как это работает: регулирующий клапан SpiraTrol

Клапана регулирующиеСкачать

Клапана регулирующие

Особенности регулирующих клапанов BERMAD Экономический эффектСкачать

Особенности регулирующих клапанов BERMAD  Экономический эффект

⚡ Отсечной и регулирующий клапаны. Часть 1. Для чего нужны и как работают.Скачать

⚡ Отсечной и регулирующий клапаны. Часть 1.  Для чего нужны и как работают.

Критерии выбора регулирующих клапановСкачать

Критерии выбора регулирующих клапанов

#222 Коллаж про расходную характеристику регулирующего клапанаСкачать

#222 Коллаж про расходную характеристику регулирующего клапана

Регулирующие клапаны VAG - описание и работаСкачать

Регулирующие клапаны VAG - описание и работа

Вебинар посвященный посвящен обзору регулирующих клапанов и электроприводовСкачать

Вебинар посвященный посвящен обзору регулирующих клапанов и электроприводов

Вебинар_ Регулирующие клапаны с э_приводами.Скачать

Вебинар_ Регулирующие клапаны с э_приводами.

Процесс сборки регулирующих клапанов. Мастер-класс от «КПСР Групп». Часть VII.Скачать

Процесс сборки регулирующих клапанов. Мастер-класс от «КПСР Групп». Часть VII.

Смысл сопротивления Kvs КМС15 и КМС25 знать обязательноСкачать

Смысл сопротивления Kvs КМС15 и КМС25   знать обязательно

Регулирующие клапаны и регуляторы прямого действияСкачать

Регулирующие клапаны и регуляторы прямого действия

Как происходят сборка и испытание запорно-регулирующего клапана? САЗ Авангард. Часть VIIIСкачать

Как происходят сборка и испытание запорно-регулирующего клапана? САЗ Авангард. Часть VIII
Поделиться или сохранить к себе:
Технарь знаток