Во сколько раз площадь боковой поверхности первого цилиндра меньше площади

Авто помощник

Видео:Егэ.11кл. Объём первого цилиндра равен 12 м³, у второго цилиндра высота в 3 раза больше,а основаниеСкачать

Егэ.11кл. Объём первого цилиндра равен 12 м³, у второго цилиндра высота в 3 раза больше,а основание

Во сколько раз площадь боковой поверхности первого цилиндра меньше площади

Даны два цилиндра. Радиус основания и высота первого равны соответственно 2 и 6, а второго — 6 и 7. Во сколько раз объём второго цилиндра больше объёма первого?

Объём цилиндра находится по формуле:

Найдём объём первого цилиндра:

Найдём объём второго цилиндра:

Найдём отношение объёма второго шара к первому:

Радиус основания цилиндра равен 26, а его образующая равна 9. Сечение, параллельное оси цилиндра, удалено от неё на расстояние, равное 24. Найдите площадь этого сечения.

Даны два цилиндра. Радиус основания и высота первого равны соответственно 4 и 18, а второго — 2 и 3. Во сколько раз площадь боковой поверхности первого цилиндра больше площади боковой поверхности второго?

Площадь боковой поверхности цилиндра находится по формуле:

Найдём площадь боковой поверхности первого цилиндра:

Найдём площадь боковой поверхности второго цилиндра:

Найдём отношение площади боковой поверхности цилиндра первого цилиндра ко второму:

Радиус основания цилиндра равен 13, а его образующая равна 18. Сечение, параллельное оси цилиндра, удалено от неё на расстояние, равное 12. Найдите площадь этого сечения.

Найдите объём правильной четырёхугольной пирамиды, сторона основания которой равна 4, а боковое ребро равно

Даны два шара с радиусами 9 и 3. Во сколько раз площадь поверхности большего шара больше площади поверхности меньшего?

Сечение, параллельное оси цилиндра, — прямоугольник. Одна его сторона равна образующей цилиндра. Найдем вторую его сторону из прямоугольного треугольника в основании по формуле: где AB — данная сторона, r — радиус основания цилиндра, аh — расстояние от сечения до оси цилиндра. Таким образом, площадь данного сечения равна 18 · 10 = 180.

В основании правильной четырехугольной пирамиды лежит квадрат. Где СH — половина его диагонали: а его площадь равна По теореме Пифагора находим высоту данной пирамиды Отсюда ее объем равен:

Площади шаров относятся как квадраты их радиусов, следовательно, площадь второго шара в раз больше площади первого.

Видео:🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

Тест по теме «Цилиндр»

Во сколько раз площадь боковой поверхности первого цилиндра меньше площади

Данный файл содержит тест в двух вариантах по теме «Цилиндр».

Просмотр содержимого документа
«Тест по теме «Цилиндр»»

Тестирование по теме «Цилиндр»

1. Радиус основания цилиндра равен 2 см, высота – 5 см, тогда площадь боковой поверхности равна:

2. В цилиндре осевым сечением является квадрат, а площадь основания равна 16π кв.дм. Найдите площадь полной поверхности цилиндра.

3. Радиус основания цилиндра в два раза меньше образующей, равной 4, тогда площадь боковой поверхности равна:

4. Площадь полной поверхности цилиндра, полученного вращением прямоугольника со сторонами 4 см и 7 см вокруг его большей стороны, равна:

5. Если площадь боковой поверхности цилиндра равна 64π кв.м, а высота – 4 м, тогда радиус равен:

6. Осевым сечением цилиндра является прямоугольник со сторонами 10 и 16 см, то площадь основания цилиндра может быть равна:

1) 256π; 2) 100π; 3) 24π; 4) 64π

7. Во сколько раз увеличится площадь боковой поверхности цилиндра, если его высоту и радиус увеличить в три раза?

8. Осевым сечением цилиндра является прямоугольник со сторонами 12 и 8 см, то площадь боковой поверхности цилиндра может быть равна:

9. Во сколько раз уменьшится площадь боковой поверхности цилиндра, если его высоту уменьшить в 4 раза, а радиус увеличить в 2 раза?

1) не изменится; 2) 8; 3) 4; 4) 2

10. Во сколько раз увеличится площадь боковой поверхности цилиндра, если его высоту уменьшить в 3 раза, а радиус увеличить в 12 раз?

Читайте также: Как достать сломанную шпильку из блока цилиндров

1) 4; 2) 6; 3) не изменится; 4) 8

1. Диаметр основания цилиндра равен 4 см, высота – 3 см, тогда площадь боковой поверхности равна:

2. В цилиндре радиуса осевым сечением является квадрат, а площадь основания равна 9π кв.дм. Найдите площадь полной поверхности цилиндра.

3. Радиус основания цилиндра в три раза меньше образующей, равной 6, тогда площадь боковой поверхности равна:

4. Площадь полной поверхности цилиндра, полученного вращением прямоугольника со сторонами 4 см и 7 см вокруг его меньшей стороны, равна:

1) 56π; 2) 105π; 3) 154π; 4) 48π

5. Если площадь боковой поверхности цилиндра равна 64π кв.м, а радиус – 8м, тогда образующая равна:

6. Осевым сечением цилиндра является прямоугольник со сторонами 10 и 16 см, то площадь основания цилиндра может быть равна:

1) 256π; 2) 100π; 3) 24π; 4) 25π

7. Во сколько раз увеличится площадь боковой поверхности цилиндра, если его радиус увеличить в три раза?

1) 9; 2) не изменится; 3) 3; 4) 27

№8. Осевым сечением цилиндра является прямоугольник со сторонами 6 и 8 см, то площадь боковой поверхности цилиндра может быть равна:

9. Как изменится площадь боковой поверхности цилиндра, если его высоту увеличить в 4 раза, а диаметр уменьшить в 2 раза?

1) уменьшится в 2 раза; 2) уменьшится в 8 раз;

3) не изменится; 4) увеличится в 2 раза

10. Во сколько раз увеличится площадь боковой поверхности цилиндра, если его высоту уменьшить в 3 раза, а радиус увеличить в 6 раз?

1) 2; 2) 6; 3) не изменится; 4) 3

Ключ к тестовой работе (оба варианта)

Видео:Объем первого цилиндра равен 12 м3. У второго цилиндра высота в три раза больше, а радиус основанияСкачать

Объем первого цилиндра равен 12 м3. У второго цилиндра высота в три раза больше, а радиус основания

Во сколько раз площадь боковой поверхности первого цилиндра меньше площади

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 8 раз, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 8 раз при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 8 раз.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 15 раз, а образующая останется прежней?

Площадь боковой поверхности конуса равна где – радиус основания, а – образующая. Поэтому при уменьшении радиуса основания в 15 раз площадь боковой поверхности уменьшится тоже в 15 раз.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 19 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 28 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 40 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Читайте также: Тойота камри задиры в цилиндрах

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 30 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 2 раза, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 37 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 10 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 11 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 23 раза, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 20 раз, а образующая останется прежней?

Читайте также: Как собрать главный тормозной цилиндр ваз 2115

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 22 раза, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 21 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 4 раза, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 31 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 13 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 33 раза, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

💡 Видео

🔴 Даны два шара с радиусами 9 и 3. Во сколько ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Даны два шара с радиусами 9 и 3. Во сколько  ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

Все задания 16 ЕГЭ БАЗА из банка ФИПИ (математика Школа Пифагора)Скачать

Все задания 16 ЕГЭ БАЗА из банка ФИПИ (математика Школа Пифагора)

Нахождение площади боковой поверхности цилиндраСкачать

Нахождение площади боковой поверхности цилиндра

🔴 Даны два конуса. Радиус основания и образующая ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Даны два конуса. Радиус основания и образующая ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

🔴 Даны два шара с радиусами 8 и 2 ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Даны два шара с радиусами 8 и 2 ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

ЕГЭ-2020: Изменение объёма цилиндраСкачать

ЕГЭ-2020: Изменение объёма цилиндра

Стереометрия, номер 38.1Скачать

Стереометрия, номер 38.1

ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРАСкачать

ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРА

Площадь осевого сечения цилиндра равна 4. Найдите площадь боковой поверхности цилиндраСкачать

Площадь осевого сечения цилиндра равна 4. Найдите площадь боковой поверхности цилиндра

№538. Площадь боковой поверхности цилиндра равна 5. Найдите площадь осевогоСкачать

№538. Площадь боковой поверхности цилиндра равна 5. Найдите площадь осевого

Задание 5 (ЕГЭ). Задачи на увеличение и уменьшение объёма тел и площади поверхности.Скачать

Задание 5 (ЕГЭ). Задачи на  увеличение и уменьшение объёма тел и площади поверхности.

Задания 11, 13 (часть 4) | ЕГЭ 2024 Математика (база) | Цилиндр, конусСкачать

Задания 11, 13 (часть 4) | ЕГЭ 2024 Математика (база) | Цилиндр, конус

Вариант ФИПИ #34 все задачи (математика ЕГЭ база)Скачать

Вариант ФИПИ #34 все задачи (математика ЕГЭ база)

Все типы 3 задания ЕГЭ математика профиль 2024Скачать

Все типы 3 задания ЕГЭ математика профиль 2024

🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

60. Площадь поверхности цилиндраСкачать

60. Площадь поверхности цилиндра

площадь полной поверхности цилиндра.Скачать

площадь полной поверхности цилиндра.
Поделиться или сохранить к себе:
Технарь знаток