Во сколько раз площадь боковой поверхности первого цилиндра меньше площади

Авто помощник

Видео:Объем первого цилиндра равен 12 м3. У второго цилиндра высота в три раза больше, а радиус основанияСкачать

Объем первого цилиндра равен 12 м3. У второго цилиндра высота в три раза больше, а радиус основания

Во сколько раз площадь боковой поверхности первого цилиндра меньше площади

Даны два цилиндра. Радиус основания и высота первого равны соответственно 2 и 6, а второго — 6 и 7. Во сколько раз объём второго цилиндра больше объёма первого?

Объём цилиндра находится по формуле:

Найдём объём первого цилиндра:

Найдём объём второго цилиндра:

Найдём отношение объёма второго шара к первому:

Радиус основания цилиндра равен 26, а его образующая равна 9. Сечение, параллельное оси цилиндра, удалено от неё на расстояние, равное 24. Найдите площадь этого сечения.

Даны два цилиндра. Радиус основания и высота первого равны соответственно 4 и 18, а второго — 2 и 3. Во сколько раз площадь боковой поверхности первого цилиндра больше площади боковой поверхности второго?

Площадь боковой поверхности цилиндра находится по формуле:

Найдём площадь боковой поверхности первого цилиндра:

Найдём площадь боковой поверхности второго цилиндра:

Найдём отношение площади боковой поверхности цилиндра первого цилиндра ко второму:

Радиус основания цилиндра равен 13, а его образующая равна 18. Сечение, параллельное оси цилиндра, удалено от неё на расстояние, равное 12. Найдите площадь этого сечения.

Найдите объём правильной четырёхугольной пирамиды, сторона основания которой равна 4, а боковое ребро равно

Даны два шара с радиусами 9 и 3. Во сколько раз площадь поверхности большего шара больше площади поверхности меньшего?

Сечение, параллельное оси цилиндра, — прямоугольник. Одна его сторона равна образующей цилиндра. Найдем вторую его сторону из прямоугольного треугольника в основании по формуле: где AB — данная сторона, r — радиус основания цилиндра, аh — расстояние от сечения до оси цилиндра. Таким образом, площадь данного сечения равна 18 · 10 = 180.

В основании правильной четырехугольной пирамиды лежит квадрат. Где СH — половина его диагонали: а его площадь равна По теореме Пифагора находим высоту данной пирамиды Отсюда ее объем равен:

Площади шаров относятся как квадраты их радиусов, следовательно, площадь второго шара в раз больше площади первого.

Видео:🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

Тест по теме «Цилиндр»

Во сколько раз площадь боковой поверхности первого цилиндра меньше площади

Данный файл содержит тест в двух вариантах по теме «Цилиндр».

Просмотр содержимого документа
«Тест по теме «Цилиндр»»

Тестирование по теме «Цилиндр»

1. Радиус основания цилиндра равен 2 см, высота – 5 см, тогда площадь боковой поверхности равна:

2. В цилиндре осевым сечением является квадрат, а площадь основания равна 16π кв.дм. Найдите площадь полной поверхности цилиндра.

3. Радиус основания цилиндра в два раза меньше образующей, равной 4, тогда площадь боковой поверхности равна:

4. Площадь полной поверхности цилиндра, полученного вращением прямоугольника со сторонами 4 см и 7 см вокруг его большей стороны, равна:

5. Если площадь боковой поверхности цилиндра равна 64π кв.м, а высота – 4 м, тогда радиус равен:

6. Осевым сечением цилиндра является прямоугольник со сторонами 10 и 16 см, то площадь основания цилиндра может быть равна:

1) 256π; 2) 100π; 3) 24π; 4) 64π

7. Во сколько раз увеличится площадь боковой поверхности цилиндра, если его высоту и радиус увеличить в три раза?

8. Осевым сечением цилиндра является прямоугольник со сторонами 12 и 8 см, то площадь боковой поверхности цилиндра может быть равна:

9. Во сколько раз уменьшится площадь боковой поверхности цилиндра, если его высоту уменьшить в 4 раза, а радиус увеличить в 2 раза?

1) не изменится; 2) 8; 3) 4; 4) 2

10. Во сколько раз увеличится площадь боковой поверхности цилиндра, если его высоту уменьшить в 3 раза, а радиус увеличить в 12 раз?

Читайте также: Как достать сломанную шпильку из блока цилиндров

1) 4; 2) 6; 3) не изменится; 4) 8

1. Диаметр основания цилиндра равен 4 см, высота – 3 см, тогда площадь боковой поверхности равна:

2. В цилиндре радиуса осевым сечением является квадрат, а площадь основания равна 9π кв.дм. Найдите площадь полной поверхности цилиндра.

3. Радиус основания цилиндра в три раза меньше образующей, равной 6, тогда площадь боковой поверхности равна:

4. Площадь полной поверхности цилиндра, полученного вращением прямоугольника со сторонами 4 см и 7 см вокруг его меньшей стороны, равна:

1) 56π; 2) 105π; 3) 154π; 4) 48π

5. Если площадь боковой поверхности цилиндра равна 64π кв.м, а радиус – 8м, тогда образующая равна:

6. Осевым сечением цилиндра является прямоугольник со сторонами 10 и 16 см, то площадь основания цилиндра может быть равна:

1) 256π; 2) 100π; 3) 24π; 4) 25π

7. Во сколько раз увеличится площадь боковой поверхности цилиндра, если его радиус увеличить в три раза?

1) 9; 2) не изменится; 3) 3; 4) 27

№8. Осевым сечением цилиндра является прямоугольник со сторонами 6 и 8 см, то площадь боковой поверхности цилиндра может быть равна:

9. Как изменится площадь боковой поверхности цилиндра, если его высоту увеличить в 4 раза, а диаметр уменьшить в 2 раза?

1) уменьшится в 2 раза; 2) уменьшится в 8 раз;

3) не изменится; 4) увеличится в 2 раза

10. Во сколько раз увеличится площадь боковой поверхности цилиндра, если его высоту уменьшить в 3 раза, а радиус увеличить в 6 раз?

1) 2; 2) 6; 3) не изменится; 4) 3

Ключ к тестовой работе (оба варианта)

Видео:Егэ.11кл. Объём первого цилиндра равен 12 м³, у второго цилиндра высота в 3 раза больше,а основаниеСкачать

Егэ.11кл. Объём первого цилиндра равен 12 м³, у второго цилиндра высота в 3 раза больше,а основание

Во сколько раз площадь боковой поверхности первого цилиндра меньше площади

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 8 раз, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 8 раз при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 8 раз.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 15 раз, а образующая останется прежней?

Площадь боковой поверхности конуса равна где – радиус основания, а – образующая. Поэтому при уменьшении радиуса основания в 15 раз площадь боковой поверхности уменьшится тоже в 15 раз.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 19 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 28 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 40 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Читайте также: Тойота камри задиры в цилиндрах

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 30 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 2 раза, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 37 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 10 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 11 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 23 раза, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 20 раз, а образующая останется прежней?

Читайте также: Как собрать главный тормозной цилиндр ваз 2115

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 22 раза, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 21 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 4 раза, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 31 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 13 раз, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 33 раза, а образующая останется прежней?

Это задание ещё не решено, приводим решение прототипа.

Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшится в 1,5 раза, а образующая останется прежней?

Площадь боковой поверхности конуса равна где — радиус окружности в основании, а — образующая. Поэтому при уменьшении радиуса основания в 1,5 раза при неизменной величине образующей площадь боковой поверхности тоже уменьшится в 1,5 раза.

🔥 Видео

🔴 Даны два шара с радиусами 8 и 2 ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Даны два шара с радиусами 8 и 2 ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

Все задания 16 ЕГЭ БАЗА из банка ФИПИ (математика Школа Пифагора)Скачать

Все задания 16 ЕГЭ БАЗА из банка ФИПИ (математика Школа Пифагора)

🔴 Даны два конуса. Радиус основания и образующая ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Даны два конуса. Радиус основания и образующая ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

Нахождение площади боковой поверхности цилиндраСкачать

Нахождение площади боковой поверхности цилиндра

🔴 Даны два шара с радиусами 9 и 3. Во сколько ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Даны два шара с радиусами 9 и 3. Во сколько  ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

Площадь осевого сечения цилиндра равна 4. Найдите площадь боковой поверхности цилиндраСкачать

Площадь осевого сечения цилиндра равна 4. Найдите площадь боковой поверхности цилиндра

№538. Площадь боковой поверхности цилиндра равна 5. Найдите площадь осевогоСкачать

№538. Площадь боковой поверхности цилиндра равна 5. Найдите площадь осевого

ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРАСкачать

ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРА

Стереометрия, номер 38.1Скачать

Стереометрия, номер 38.1

ЕГЭ-2020: Изменение объёма цилиндраСкачать

ЕГЭ-2020: Изменение объёма цилиндра

Задания 11, 13 (часть 4) | ЕГЭ 2024 Математика (база) | Цилиндр, конусСкачать

Задания 11, 13 (часть 4) | ЕГЭ 2024 Математика (база) | Цилиндр, конус

Задание 5 (ЕГЭ). Задачи на увеличение и уменьшение объёма тел и площади поверхности.Скачать

Задание 5 (ЕГЭ). Задачи на  увеличение и уменьшение объёма тел и площади поверхности.

Все типы 3 задания ЕГЭ математика профиль 2024Скачать

Все типы 3 задания ЕГЭ математика профиль 2024

Вариант ФИПИ #34 все задачи (математика ЕГЭ база)Скачать

Вариант ФИПИ #34 все задачи (математика ЕГЭ база)

🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

площадь полной поверхности цилиндра.Скачать

площадь полной поверхности цилиндра.

60. Площадь поверхности цилиндраСкачать

60. Площадь поверхности цилиндра
Поделиться или сохранить к себе:
Технарь знаток