Возвратно поступательное движение цилиндра

Авто помощник

Видео:Механизм преобразования вращательного движения в поступательноеСкачать

Механизм преобразования вращательного движения в поступательное

Возвратно-поступательный механизм: виды, устройство, применение

Усилие от источника к исполнительному органу может передаваться самым различным образом. Довольно большое распространение получили варианты исполнения, предназначение которых заключается в преобразовании вращательно движения в возвратно-поступательное. Подобный механизм сегодня устанавливается крайне часто. Рассмотрим разновидности, область применения и многие другие моменты подробнее.

Возвратно поступательное движение цилиндра

Видео:Как преобразовать вращательное движение в возвратно - поступательное.Скачать

Как преобразовать вращательное движение в возвратно - поступательное.

Механизм возвратно-поступательного движения

Передача усилия от источника к конечному устройству может проводится самым различным образом. Возвратно поступательный механизм обладает следующими особенностями:

  1. В большинстве случаев он устанавливается при создании обрабатывающего оборудования, к примеру станка, у которого инструмент может одновременно получать вращение и перемещаться в нескольких плоскостях.
  2. Создаваемая конструкция должна быть рассчитана на достаточно длительный эксплуатационный срок. Для этого используется износостойкий материал, который может выдержать длительное воздействие.
  3. Уделяется внимание длительности эксплуатации. Привод может служить определенное количество циклов или времени.
  4. Немаловажным параметром назовем компактность. Слишком большие механизмы возвратно-поступательного движения увеличивают вес конструкции, делают ее более громоздкой.
  5. Ремонтопригодность считается важным параметром, который должен учитываться. При длительной эксплуатации приходится проводить замену износившихся элементов.

Основные эксплуатационные характеристики во многом зависят от принципа действия механизма возвратно-поступательного перемещения. Именно поэтому следует каждый рассматривать подробно.

Видео:Cylindrical Cam 3D AnimationСкачать

Cylindrical Cam 3D Animation

Типы передач для поступательного движения

Встречается довольно большое количество различных устройств, которые могут применяться для преобразования передаваемого усилия. Большое распространение получили следующие варианты:

  1. Кривошипно-шатунные может применяться для преобразования вращения в возвратно-поступательное движение и наоборот. В качестве основных элементов применяется кривошипный вал, ползун, шатун и специальный элемент кривошипа. Для расчета момента и других параметров могут использоваться различные формулы. В качестве основного элемента также могут использовать коленчатый вал, который имеет одну или несколько ступеней. Они получили весьма широкое распространение, к примеру, двигатели или насосы, сельскохозяйственная техника. При изготовлении основных деталей, как правило, применяется сталь с высокой коррозионной стойкостью.
  2. Кулисные конструкции получили весьма широкое распространение, так как усилие передается без шатуна. В подобном случае ползун напоминает кулису, в которой делается специальное отверстие. На момент вращения кривошипного вала кулиса двигается вправо и налево. В некоторых случаях вместе кулисы применяется стержень с насаженной втулкой. Для обеспечения контакта применяется прижимная пружина. Существенно повысить качество работы устройства можно за счет установки ролика на конце устройства.
  3. Кулачковые варианты исполнения применяются для преобразования вращательного перемещения в возвратно-поступательное. Основным элементом конструкции можно назвать кулачки, а также стержень, криволинейный диск. Для направления положения стержня устанавливается втулка, которая характеризуется весьма высокой точностью позиционирования. Снизить степень трения поверхности можно за счет ролика. В некоторых случаях вместо стержня устанавливается касающийся рычаг. Основные параметры могут быть рассчитаны самостоятельно. Механизм возвратно-поступательного движения рассматриваемого типа применяется в самых различных случаях, к примеру, в механизированном оборудовании.
  4. Шарнирно-рычажные устройства устанавливаются в том случае, если нужно сменить направление движение в какой-либо части устройства. Примером можно назвать ситуация, когда вертикальное перемещение следует перенаправлять в горизонтальное. Кроме этого, в некоторых случаях нужно провести увеличение или уменьшение хода.

Читайте также: Схема цилиндров субару форестер

Возвратно поступательное движение цилиндра

Приведенная выше информация указывает на то, что встречается просто огромное количество различных вариантов исполнения механизмов. Выбор проводится по самым различным критериям, которые должны учитываться.

Видео:Кривошипно шатунный механизм обеспечивающий возвратно поступательное прямолинейное движениеСкачать

Кривошипно шатунный механизм обеспечивающий возвратно поступательное прямолинейное движение

Устройство для преобразования возвратно-поступательного движения в прямолинейное

Также механизмы возвратно поступательного движения могут применяться для создания условий прямолинейного перемещения исполнительного органа. Ключевыми моментами подобного варианта исполнения назовем:

  1. Существенно повышается надежность.
  2. При изготовлении применяются материалы, характеризующие повышенной износостойкостью.
  3. Подобные механизмы несколько схожи с теми, которые проводят преобразование вращения в возвратно-поступательное перемещение.

Многие конструкции работают на основе применения прямолинейного перемещения. Именно поэтому они получили весьма широкое распространение.

Видео:Скатывание цилиндров с наклонной плоскостиСкачать

Скатывание цилиндров с наклонной плоскости

Возвратно-поступательный механизм своими руками

Существенно сэкономить можно путем создания возвратно-поступательного механизма своими руками. В некоторых случаях его делают из дрели, в других для передачи вращающего крутящего момента используется электрический двигатель.

Возвратно поступательное движение цилиндра

Особенностями назовем нижеприведенные моменты:

  1. Большинство конструкций самостоятельно изготовить не получается, так как требуемые детали характеризуются высокой сложностью. Примером можно назвать сочетание кривошипного вала и шестерни.
  2. Во всех случаях должны проводится расчеты, так как в противном случае обеспечить требуемые параметры не получается.
  3. Изготовить конструкцию рассматриваемого типа можно только при наличии специального оборудования. Если устройство сделано своими силами, то его реальные параметры от расчетных могут существенно отличаться.

В целом можно сказать, что рассматриваемая задача довольно сложна в исполнении. Именно поэтому работу должны проводить исключительно профессионалы, которые могут провести сложные расчеты, а также изготовить требуемые детали.

Видео:Ромбовый двигательСкачать

Ромбовый двигатель

Область применения

Привод рассматриваемого типа встречаются в самых различных областях. При этом:

  1. Чаще всего привод устанавливается в станке, предназначенный для обработки металла и дерева.
  2. Некоторые инструмента также основаны на преобразовании вращательного движения в возвратно-поступательное. Примером можно назвать ударную дрель или перфораторы, которые сегодня распространены.
  3. В промышленности можно встретить транспортеры, конструкции для подъема и опускания различного продукта.

Единственным, но существенным недостатком можно назвать довольно большие размеры устройства. Кроме этого, нужно обеспечивать качественную смазку, так как трение становится причиной нагрева и износа.

Видео:Механизм Вюрта. Преобразование возвратно-поступательного движения во вращение.Скачать

Механизм Вюрта. Преобразование возвратно-поступательного движения во вращение.

Кривошипно-шатунный механизм (КШМ). Маятник Капицы

Данная статья является вводной теорией к занятию по робототехнике «Кривошипно-шатунный механизм из Lego EV3″

Первые КШМ

Первые упоминания об использовании кривошипно-шатунного механизма можно отнести ко временам Древнего Рима (примерно III век н.э.). Машина для распиливания каменных блоков передавала вращение от водяного колеса с помощью зубчатой передачи на кривошипно-шатунный механизм, который преобразовывал вращательное движение в возвратно-поступательное движение полотна пилы. Также такие устройства могли использоваться на древних лесопилках.

Возвратно поступательное движение цилиндра

Схема водяного древнеримского распиловочного станка с КШМ

Большого распространения такие машины не получили – деревянные части из-за большого количества трущихся деталей быстро изнашивались и требовали частого ремонта, а рабский труд был намного дешевле и не требовал большой квалификации рабочих.

В XVI веке кривошипно-шатунный механизм появился на деревянных самопрялках. Самопрялка – это ручной станок для прядения нити из шерсти, состоящий из двух катушек. В самопрялке для скручивания нити использовался принцип ременной передачи. Раньше большую катушку приходилось раскручивать рукой. К самопрялке добавили педаль. Нажимая ногой на педаль, работник смог раскручивать катушку без использования рук. Этот механизм упростил работу и позволил за то же время производить больше пряжи. В данном устройстве возвратно-поступательное движение педали передавалось через деревянный шатун на кривошип и преобразовывалось во вращательное движение большой катушки (шкива).

Читайте также: Повышенное содержание цилиндров в моче это

Возвратно поступательное движение цилиндра

Самопрялка с педалью и КШМ позволяла освободить руки и сделать работу более производительной

КШМ в паровых машинах

Начиная с начала XVIII века большую популярность среди изобретателей и ученых начинают получать паровые машины. Первый паровой двигатель для водяного насоса построил в 1705 году английский изобретатель Томас Ньюкомен для выкачивания воды из глубоких шахт.

Позднее устройство парового двигателя было усовершенствовано шотландским инженером и механиком Джеймсом Уаттом (1736-1819). Кстати, именно Джеймс Уатт ввел в оборот термин «лошадиная сила», а его именем назвали единицу мощности Ватт. Паровая машина Уатта получила сложную систему связанных тяг, а планетарная зубчатая передача преобразовывала возвратно-поступательное движение поршня во вращательное движение маховика (большого тяжелого колеса). Данная паровая машина стала универсальной, так как в отличие от машины Ньюкомена поршень имел рабочий ход в обе стороны. Машина Уатта получила широкое распространение на ткацких фабриках, в металлургии, при строительстве первых паровозов для железных дорог XVIII века.

Нужно сказать, что паровыми машинами занимались в те времена очень многие изобретатели. Так, в Российской Империи свою двухцилиндровую паровую машину изобрел инженер Иван Иванович Ползунов (1728-1766).

В XIX веке паровую машину Уатта упростили, заменив сложный планетарный механизм на кривошипно-шатунный механизм.

Возвратно поступательное движение цилиндра

Паровая машина с кривошипно-шатунным механизмом Схема паровой машины с кривошипно-шатунным механизмом

Паровая машина с КШМ нашла широкое применение при строительстве первых автомобилей на паровой тяге и паровозов, перевозящих грузы по железной дороге.

КШМ в двигателях внутреннего сгорания

До этого мы рассматривали использование кривошипно-шатунного механизма в паровых двигателях. В паровом двигателе топливо сгорает в печи (вне цилиндра) и нагревает водяной котел, и уже водяной пар в цилиндре толкает поршень.

В двигателе внутреннего сгорания топливная смесь (воздух + газ, или воздух + бензин и т.д.) поджигается внутри цилиндра и продукты горения толкают поршень. Сокращенно такие двигатели называют ДВС.

Первый одноцилиндровый ДВС на газовом топливе построил в 1860 году в Париже французский изобретатель Жан Ленуар.

Возвратно поступательное движение цилиндра

Двигатель внутреннего сгорания Жана Ленуара (внешне очень похож на паровую машину)

Однако широкое применение двигатели внутреннего сгорания нашли в конце XIX века после получения керосина и бензина из нефти. Появление жидкого топлива позволило создать экономичные двигатели небольшой массы, которые можно было использовать для привода транспортных машин.

В 1881-1885 гг. российский изобретатель Огнеслав Костович сконструировал и построил в России восьмицилиндровый двигатель мощностью 59 кВт.

Возвратно поступательное движение цилиндра

Двигатель внутреннего сгорания Огнеслава Костовича

В 1897 г. немецким инженером Рудольфом Дизелем был спроектирован и построен первый двигатель с воспламенением от сжатия. Это был компрессорный двигатель, работающий на керосине, впрыскиваемом в цилиндр при помощи сжатого воздуха.

Возвратно поступательное движение цилиндра

Рудольф Дизель и его двигатель внутреннего сгорания

Все эти ДВС имели схожие черты и использовали кривошипно-шатунный механизм для преобразования возвратно-поступательного движения поршня во вращательное движение коленвала.

Давайте посмотрим на схему устройства современного двигателя внутреннего сгорания.

Поршень совершает возвратно-поступательное движение вдоль цилиндра – он ходит вверх и вниз.

Читайте также: Бачок тормозного цилиндра урал

Шатун – деталь, связывающая кривошип и поршень.

Кривошип – условная деталь, которая связывает шатун с коленвалом.

Противовес снижает вибрации при вращении коленвала.

Блок цилиндров – корпус, в котором находятся цилиндры двигателя.

Поршневой палец – цилиндрическая деталь, ось вращения шатуна относительно поршня.

Коленвал (коленчатый вал) – ось вращения ступенчатой формы.

Верхняя мертвая точка – крайнее верхнее положение поршня, где меняется направление его движения.

Нижняя мертвая точка — крайнее нижнее положение поршня, где меняется направление его движения.

Ход поршня — расстояние между крайними положениями поршня. Равно удвоенному радиусу кривошипа.

Видео:Преобразование возвратно поступательного движения во вращательноеСкачать

Преобразование возвратно поступательного движения во вращательное

Маятник Капицы

Обычный маятник, если перевернуть его кверху ногами, неустойчив. Для него крайне трудно найти верхнюю точку равновесия. Но если совершать быстрые вертикальные возвратно-поступательные колебания, то положение такого маятника становится устойчивым.

Возвратно поступательное движение цилиндра

Петр Леонидович Капица

Советский академик и нобелевский лауреат по физике Петр Леонидович Капица (1894 — 1984) использовал модель маятника с вибрирующим подвесом для построения новой теории, которая описывала эффекты стабилизации тел или частиц. Работа Капицы по стабилизации маятника была опубликована в 1951 году, а сама модель получила название «маятник Капицы». Более того, было открыто новое направление в физике — вибрационная механика. Данная модель позволила наглядно показать возможности высокочастотной электромагнитной стабилизации пучка заряженных частиц в ускорителях.

Возвратно поступательное движение цилиндра

Владимир Игоревич Арнольд

Другой советский математик и академик Владимир Игоревич Арнольд (1937-2010), который был заместителем Капицы, вспоминал его слова:

«Он (Капица — примечание) сказал: «Вот смотрите — когда придумывается какая-то физическая теория, то прежде всего надо сделать маленький какой-нибудь прибор, на котором его наглядно можно было-бы продемонстрировать кому угодно. Например, Будкер и Векслер хотят делать ускорители на очень сложной системе. Но я посмотрел, что уравнения, которые говорят об устойчивости этого пучка, означают, что если маятник перевернут кверху ногами, он обычно неустойчив, падает. Но если точка подвеса совершает быстрые вертикальные колебания, то он становится устойчивым. В то время как ускоритель стоит много миллионов, а этот маятник можно очень легко сделать. Я его сделал на базе швейной электрической машинки, он вот здесь стоит». Он нас отвел в соседнюю комнату и показал этот стоящий вертикально маятник на базе швейной машинки».

У математика Арнольда не было своей швейной машинки, и он огорчился. Но у него была электробритва «Нева», из которой и был собран перевернутый маятник. К сожалению, в первой конструкции маятник падал. Тогда Арнольд вывел формулу и увидел, что длина маятника не должна быть больше 12 сантиметров. Известный математик укоротил подвес до 11 сантиметров и все получилось.

Возвратно поступательное движение цилиндра

Давайте посмотрим, какие силы действуют на «маятник Капицы». После прохождения верхней мертвой точки подвес маятника начинает тянуть грузик вниз. После прохождения нижней мертвой точки подвес толкает грузик вверх. Так как углы вежду векторами сил в верхней и нижней точке разные, то сумма их векторов дает силу, направленную к оси вертикальных колебаний маятника. Если эта сила больше силы тяжести, то верхнее положение маятника становится устойчивым.

Возвратно поступательное движение цилиндра

А эта формула описывает взаимосвязь частоты вибраций подвеса, амплитуды колебаний и длины жесткого подвеса.

🔍 Видео

#Shorts Cylindrical Cam Mechanism - Mechanical Mechanisms - Mechanical Principles -Скачать

#Shorts Cylindrical Cam Mechanism - Mechanical Mechanisms - Mechanical Principles -

Возвратно-поступательное движение ДАФСкачать

Возвратно-поступательное движение ДАФ

Электропривод возвратно-поступательного движения и демо его преимущества перед ручным приводомСкачать

Электропривод возвратно-поступательного движения и демо его преимущества перед ручным приводом

Превращение вращательного движения в возвратно поступательноеСкачать

Превращение вращательного движения в возвратно поступательное

Поступательное и вращательное движения.Скачать

Поступательное и вращательное движения.

Cylindrical Cam Mechanism Working | Rotational Motion Transforms to Linear Motion #Science #machineСкачать

Cylindrical Cam Mechanism Working | Rotational Motion Transforms to Linear Motion #Science #machine

Кривошипно - кулисный механизмСкачать

Кривошипно - кулисный механизм

Паровой двигатель — как это работаетСкачать

Паровой двигатель — как это работает

КАК СДЕЛАТЬ СВОИМИ ДВИГАТЕЛЬ с поступательным движением из двигателя с радиальным движением!Скачать

КАК СДЕЛАТЬ СВОИМИ ДВИГАТЕЛЬ с поступательным движением из двигателя с радиальным движением!

Шумахер - планетарный механизм возвратно-поступательного движения (Schumacher)Скачать

Шумахер - планетарный механизм возвратно-поступательного движения (Schumacher)

Mechanism 10 Cylindrical Cam Clamper #ShortsСкачать

Mechanism 10 Cylindrical Cam Clamper #Shorts

Mechanism 7 Cylindrical Cam Pusher #MechanicalDesign#CylindricalCam #CamPusher #Cycle MotionСкачать

Mechanism 7 Cylindrical Cam Pusher #MechanicalDesign#CylindricalCam #CamPusher #Cycle Motion
Поделиться или сохранить к себе:
Технарь знаток