На всех двухтактных подвесных лодочных моторах, зприменяются работающие на легком топливе двигатели, кривошипная камера которых используется и в качестве продувочного насоса. Основные технические показатели такого двигателя — литровая мощность и экономичность — находятся в прямой зависимости от степени наполнения горючей смесью рабочей камеры (камеры сгорания).
Рассмотрим зависимость наполнения рабочей камеры от качества работы системы впуска, основное назначение которой — обеспечивать наиболее полное заполнение кривошипной камеры, т. е. объема ниже поршня, свежей горючей смесью.
Не касаясь процессов, происходящих в рабочей камере, т. е. выше поршня (сжатие горючей смеси, воспламенение ее и расширение), посмотрим, что происходит в кривошипной камере — картере, в чем заключается принцип действия системы впуска и каковы ее наивыгоднейшие, оптимальные характеристики.
При движении поршня в цилиндре двигателя вверх от нижней мертвой точки (НМТ) после закрытия продувочных окон в пространстве под поршнем возникает все увеличивающееся разрежение. Если в этот момент открыть канал, соединяющий кривошипную камеру с карбюратором, в нее будет засасываться горючая смесь. Когда, миновав верхнюю мертвую точку (ВМТ), поршень начнет двигаться вниз, поступившая смесь будет сжиматься (чтобы при этом не произошло ее обратного выброса, впускной канал после прохождения поршнем ВМТ должен быть перекрыт).
Иными словами, кривошипная камера и поршень служат насосом, всасывающим смесь из карбюратора и подающим ее под давлением в камеру сгорания.
На рис. 1 показана иллюстрирующая сказанное теоретическая круговая диаграмма газораспределения. На ней схематически показано протекание во времени процессов всасывания (собственно впуск), выхлопа (выпуск) и продувки за один полный оборот коленчатого вала. Понятно, что продолжительность и моменты начала и конца этих процессов обусловлены расположением и размером (по высоте цилиндра) продувочных и выхлопных окон и выбором момента открытия впускных окон. В этой связи необходимо подчеркнуть, что картина газораспределения, показанная на рис. 1, условна, так как не учитывает инерции движущейся с большой скоростью (до 100 м/сек) горючей смеси. Если построить двигатель по такой теоретической диаграмме, работать он, конечно, будет, но его литровая мощность, т. е. мощность в л. с. на 1000 см3 рабочего объема, будет значительно ниже обычно достигаемого уровня.
Для обеспечения эффективности работы кривошипной камеры как насоса на практике, с учетом инерции потока (см. рис. 2), всасывающие окна открывают несколько раньше — на величину до 20° угла поворота коленвала, чем поршень перекроет продувочные окна, и закрывают не в тот момент, когда поршень дошел до ВМТ, а позже — на величину до 60-70° угла поворота коленвала за ВМТ. Первая из этих мер обеспечивает подсасывание свежей смеси из карбюратора за счет кинетической энергии потока смеси, поступающей в цилиндр при еще продолжающейся продувке. Благодаря второй — происходит дополнительная дозарядка кривошипной камеры за счет кинетической энергии установившегося потока смеси в канале от карбюратора к кривошипной камере. Диаграмма такого вида (рис. 2) оптимальна с точки зрения получения наивысшей литровой мощности и экономичности.
Угол ф1 от момента открытия всасывающего канала до ВМТ называется углом предварения впуска, а угол ф2 от ВМТ до момента закрытия всасывающего канала — углом запаздывания закрытия.
Продолжительность продувки по углу поворота коленчатого вала обычно равна 110-130°. Если принять, что в среднем продолжительность продувки равна 120°, а всасывающее окно открывается на 15° раньше окончания продувки, угол предварения впуска
Угол запаздывания закрытия обычно на нефорсированных моторах принимается равным 40-50° (при большей его величине наблюдается обратный выброс смеси в карбюратор) и доходит до 65-70° на гоночных высокооборотных двигателях. Если принять ф2 равным 45°, общий угол ф = ф1+ф2, т. е. оптимальная продолжительность всасывания, получается
Итак, мы установили оптимальные характеристики газораспределения и в частности — всасывания. Посмотрим теперь, как они реализуются практически, как работает управляющий механизм системы впуска.
В двигателях подвесных моторов применяются механизмы управления всасыванием трех типов: поршневые, клапанные и золотниковые.
Поршневое управление впуском. Само название механизма показывает, что управление впуском, точно так же, как и продувкой и выхлопом, выполняется непосредственно самим поршнем. Поршень при движении нижней кромкой периодически перекрывает впускное окно, прорезанное в зеркале цилиндра. При поршневом управлении диграмма всасывания (см. рис, 3) всегда симметрична относительно ВМТ в силу того, что поршень открывает и закрывает впускное окно на одинаковых расстояниях до и после ВМТ. Угол запаздывания закрытия, как мы уже отмечали, невыгодно делать больше 60-70°; поэтому и угол предварения открытия также будет равным 60-70°. Продолжительность всасывания получается
т. е. меньше оптимальной на 50°.
Из круговой диаграммы виден и основной недостаток поршневого управления всасыванием: значительная часть хода поршня — от момента закрытия продувочных окон и до открытия всасывающих — при всасывании не используется. По этой причине такая система распространения не получила, хотя и применялась на наших одноцилиндровых подвесных моторах «ЛМ-1», «ЛМР-6», «ЗИФ-5», «Стреле» и некоторых других. В то же время шведская фирма «Монарк-Кресчент» уже много лет применяет поршневой впуск на моторах различной кубатуры; высокие литровая мощность (до 90 л.с./л) и экономичность моторов «Кресчент», несмотря на ограниченные возможности симметричной диаграммы, — результат длительной отработки конструкции и специальной настройки системы газораспределения.
Читайте также: Схема подключения косы ваз 2110 инжектор 8 клапанов
В принципе следует отметить, что настройка системы газораспределения вообще является одним из эффективных средств повышения мощности любых двухтактных двигателей. В частности, при настройке системы впуска приходится подбирать длину и сечение впускного патрубка, диаметр диффузора карбюратора, характеристики глушителя всасывания, оптимальную степень сжатия в картере и т. п. Выполнение этих довольно трудоемких работ по настройке и позволяет получать высокие технико-экономические показатели даже при поршневом управлении впуском.
Уместно подчеркнуть, что благодаря исключительной простоте и надежности поршневое управление впуском широко используется на транспортных двигателях — в первую очередь для мотоциклов и мотороллеров.
Клапанный механизм впуска. Известны две конструкции клапанного механизма — с автоматическим и принудительным открытием и закрытием. Будем рассматривать только первый вариант, так как второй применяется крайне редко — буквально в единичных конструкциях.
Для автоматизации системы достаточно установить на пути потока смеси от карбюратора к кривошипной камере клапан, который под напором потока открывается при ходе поршня к ВМТ и закрывается при обратном движении.
Обратимся к круговой диаграмме (рис. 4). Поршень, двигаясь вверх от НМТ, закрывает верхней кромкой продувочное окно; начинает расти разрежение; под действием разницы давлений клапан впуска открывается и горючая смесь поступает в кривошипную камеру. После прохода поршнем ВМТ объем кривошипной камеры начинает уменьшаться и происходит сжатие горючей смеси, но автоматический клапан еще некоторое время остается открытым под напором установившегося движения потока смеси и впуск продолжается. Таким образом при использовании автоматического клапана, в отличие от поршневой схемы, получается несимметричная диаграмма всасывания.
Чаще всего в подвесных моторах применяют пластинчатые лепестковые клапаны с ограничителями отгиба, расположенными на перегородке из алюминиевого сплава или пластмассы, крепящейся к передней части картера. Перегородка эта делается плоской (моторы «Ветерок», «Москва-12,5», «Прибой») или конической («Москва-25»). Сами пластинки клапана изготовляются из стали или бериллиевой бронзы одинарными («Ветерок», см. рис. 5), двухлепестковыми («Прибой»), трехлепестковыми («Москва-12,5») или даже многолепестковыми (американские «Эвинруды», см. рис 6).
Своеобразное расположение клапана впуска — на средней опоре коленчатого вала — применено на американских моторах «Меркюри». Такое решение делает конструкцию двигателя более компактной и снижает шум впуска, но затрудняет смену клапана.
Получение больших литровых мощностей в двигателях с впускными пластинчатыми клапанами, особенно при малых рабочих объемах, затруднительно, поскольку сами клапаны создают большое аэродинамическое сопротивление, а увеличение размеров впускных окон ведет к увеличению объема кривошипной камеры. Применение же обладающих меньшим сопротивлением менее жестких клапанов ограничивается необходимостью обеспечить прочность и надежность клапана и перегородки.
Золотниковый механизм впуска. Управление впуском смеси производится вращающимся золотником, жестко связанным с коленчатым валом и повторяющим его вращение. Таким образом регулировкой положения на оси и угла сектора золотника можно обеспечить открытие и закрытие впускного окна в любой момент — независимо от положения поршня и степени разрежения в картере. Благодаря этому конструктор имеет возможность максимально приблизить круговую диаграмм двигателя к наивыгоднейшей, оптимальной.
Конструктивно золотники выполняются различно: в виде трубки, цилиндра или диска с вырезами. Первые два варианта не получили большого распространения и применялись на подвесных моторах небольшой мощности («Чайка»). Наиболее часто применяется дисковый золотник из пластмассы или стали, размещаемый непосредственно в картере (и скрепляемый со щечкой коленчатого вала) либо в специальном приливе картера.
В боковой стенке картера прорезано всасывающее окно. При совмещении выреза в диске золотника с этим окном происходит всасывание смеси; при закрытии окна сплошной частью золотника картер разобщается с карбюратором, происходит сжатие. Золотник смазывается маслом, растворенным в горючей смеси; благодаря этому трение о стенки картера незначительно.
Управление всасыванием с дисковыми золотниками, расположенными в картере, применяется на моторах «Вихрь» (золотники из текстолита) и «Нептун» (из капрона, см. рис. 9). На моторе «Салют» дисковый золотник также выполнен из текстолита, но размещен в специальном приливе картера.
Еще раз подчеркнем, что золотниковое управление всасыванием, по сравнению с поршневым и клапанным, обеспечивает наилучшее, наполнение кривошипной камеры; это делает перспективным применение золотниковых механизмов в двухтактных двигателях лодочных моторов с высокой литровой мощностью и особенно — в двигателях гоночных моделей.
Видео:Китайские Аналоги Ямаха 9.9-15.Лечим Лепестковые Клапана Правильно!Скачать
Как работает система впуска на подвесных моторах
На всех подвесных лодочных моторах, за редким исключением, применяются двухтактные работающие на легком топливе двигатели, кривошипная камера которых используется и в качестве продувочного насоса. Основные технические показатели такого двигателя — литровая мощность и экономичность — находятся в прямой зависимости от степени наполнения горючей смесью рабочей камеры (камеры сгорания).
Читайте также: Какое масло заливается в коробку передач лада ларгус 16 клапанов
Рассмотрим зависимость наполнения рабочей камеры от качества работы системы впуска, основное назначение которой — обеспечивать наиболее полное заполнение кривошипной камеры, т. е. объема ниже поршня, свежей горючей смесью.
Не касаясь процессов, происходящих в рабочей камере, т. е. выше поршня (сжатие горючей смеси, воспламенение ее и расширение), посмотрим, что происходит в кривошипной камере — картере, в чем заключается принцип действия системы впуска и каковы ее наивыгоднейшие, оптимальные характеристики.
При движении поршня в цилиндре двигателя вверх от нижней мертвой точки (НМТ) после закрытия продувочных окон в пространстве под поршнем возникает все увеличивающееся разрежение. Если в этот момент открыть канал, соединяющий кривошипную камеру с карбюратором, в нее будет засасываться горючая смесь. Когда, миновав верхнюю мертвую точку (ВМТ), поршень начнет двигаться вниз, поступившая смесь будет сжиматься (чтобы при этом не произошло ее обратного выброса, впускной канал после прохождения поршнем ВМТ должен быть перекрыт).
Иными словами, кривошипная камера и поршень служат насосом, всасывающим смесь из карбюратора и подающим ее под давлением в камеру сгорания.
На рис. 1 показана иллюстрирующая сказанное теоретическая круговая диаграмма газораспределения. На ней схематически показано протекание во времени процессов всасывания (собственно впуск), выхлопа (выпуск) и продувки за один полный оборот коленчатого вала. Понятно, что продолжительность и моменты начала и конца этих процессов обусловлены расположением и размером (по высоте цилиндра) продувочных и выхлопных окон и выбором момента открытия впускных окон. В этой связи необходимо подчеркнуть, что картина газораспределения, показанная на рис. 1, условна, так как не учитывает инерции движущейся с большой скоростью (до 100 м/сек) горючей смеси. Если построить двигатель по такой теоретической диаграмме, работать он, конечно, будет, но его литровая мощность, т. е. мощность в л. с. на 1000 см 3 рабочего объема, будет значительно ниже обычно достигаемого уровня.
Для обеспечения эффективности работы кривошипной камеры как насоса на практике, с учетом инерции потока (см. рис. 2), всасывающие окна открывают несколько раньше — на величину до 20° угла поворота коленвала, чем поршень перекроет продувочные окна, и закрывают не в тот момент, когда поршень дошел до ВМТ, а позже — на величину до 60—70° угла поворота коленвала за ВМТ. Первая из этих мер обеспечивает подсасывание свежей смеси из карбюратора за счет кинетической энергии потока смеси, поступающей в цилиндр при еще продолжающейся продувке. Благодаря второй — происходит дополнительная дозарядка кривошипной камеры за счет кинетической энергии установившегося потока смеси в канале от карбюратора к кривошипной камере. Диаграмма такого вида (рис. 2) оптимальна с точки зрения получения наивысшей литровой мощности и экономичности.
Угол φ1 от момента открытия всасывающего канала до ВМТ называется углом предварения впуска, а угол φ2 от ВМТ до момента закрытия всасывающего канала — углом запаздывания закрытия.
Продолжительность продувки по углу поворота коленчатого вала обычно равна 110—130°. Если принять, что в среднем продолжительность продувки равна 120°, а всасывающее окно открывается на 15° раньше окончания продувки, угол предварения впуска:
Угол запаздывания закрытия обычно на нефорсированных моторах принимается равным 40—50° (при большей его величине наблюдается обратный выброс смеси в карбюратор) и доходит до 65—70° на гоночных высокооборотных двигателях. Если принять φ2 равным 45°, общий угол φ=φ1+φ2, т. е. оптимальная продолжительность всасывания, получается:
Итак, мы установили оптимальные характеристики газораспределения и в частности — всасывания. Посмотрим теперь, как они реализуются практически, как работает управляющий механизм системы впуска.
В двигателях подвесных моторов применяются механизмы управления всасыванием трех типов: поршневые, клапанные и золотниковые.
Видео:Нужен ли обратный клапан на GLADIATOR 9.8Скачать
Поршневое управление впуском
Само название механизма показывает, что управление впуском, точно так же, как и продувкой и выхлопом, выполняется непосредственно самим поршнем. Поршень при движении нижней кромкой периодически перекрывает впускное окно, прорезанное в зеркале цилиндра. При поршневом управлении диаграмма всасывания (см. рис. 3) всегда симметрична относительно ВМТ в силу того, что поршень открывает и закрывает впускное окно на одинаковых расстояниях до и после ВМТ. Угол запаздывания закрытия, как мы уже отмечали, невыгодно делать больше 60—70°; поэтому и угол предварения открытия также будет равным 60—70°. Продолжительность всасывания получается:
т. е. меньше оптимальной на 50°.
Из круговой диаграммы виден и основной недостаток поршневого управления всасыванием: значительная часть хода поршня — от момента закрытия продувочных окон и до открытия всасывающих — при всасывании не используется. По этой причине такая система распространения не получила, хотя и применялась на наших одноцилиндровых подвесных моторах «ЛМ-1», «ЛМР-6», «ЗИФ-5», «Стреле» и некоторых других. В то же время шведская фирма «Монарк-Кресчент» уже много лет применяет поршневой впуск на моторах различной кубатуры; высокие литровая мощность (до 90 л. с.) и экономичность моторов «Кресчент», несмотря на ограниченные возможности симметричной диаграммы, — результат длительной отработки конструкции и специальной настройки системы газораспределения.
Читайте также: Гравитационный шаровый клапан для байпаса
В принципе следует отметить, что настройка системы газораспределения вообще является одним из эффективных средств повышения мощности любых двухтактных двигателей. В частности, при настройке системы впуска приходится подбирать длину и сечение впускного патрубка, диаметр диффузора карбюратора, характеристики глушителя всасывания, оптимальную степень сжатия в картере и т. п. Выполнение этих довольно трудоемких работ по настройке и позволяет получать высокие технико-экономические показатели даже при поршневом управлении впуском.
Уместно подчеркнуть, что благодаря исключительной простоте и надежности поршневое управление впуском широко используется на транспортных двигателях — в первую очередь для мотоциклов и мотороллеров.
Видео:9.9 Обрыв лепестка.Скачать
Клапанный механизм впуска
Известны две конструкции клапанного механизма — с автоматическим и принудительным открытием и закрытием. Будем рассматривать только первый вариант, так как второй применяется крайне редко — буквально в единичных конструкциях.
Для автоматизации системы достаточно установить на пути потока смеси от карбюратора к кривошипной камере клапан, который под напором потока открывается при ходе поршня к ВМТ и закрывается при обратном движении.
Обратимся к круговой диаграмме (рис. 4). Поршень, двигаясь вверх от НМТ, закрывает верхней кромкой продувочное окно; начинает расти разрежение; под действием разницы давлений клапан впуска открывается и горючая смесь поступает в кривошипную камеру. После прохода поршнем ВМТ объем кривошипной камеры начинает уменьшаться и происходит сжатие горючей смеси, но автоматический клапан еще некоторое время остается открытым под напором установившегося движения потока смеси и впуск продолжается. Таким образом при использовании автоматического клапана, в отличие от поршневой схемы, получается несимметричная диаграмма всасывания.
Чаще всего в подвесных моторах применяют пластинчатые лепестковые клапаны с ограничителями отгиба, расположенными на перегородке из алюминиевого сплава или пластмассы, крепящейся к передней части картера. Перегородка эта делается плоской (моторы «Ветерок», «Москва-12,5», «Прибой») или конической («Москва-25»), Сами пластинки клапана изготовляются из стали или бериллиевой бронзы одинарными («Ветерок», см. рис. 5), двухлепестковыми («Прибой»), трехлепестковыми («Москва-12,5») или даже многолепестковыми (американские «Эвинруд», см. рис. 6).
Своеобразное расположение клапана впуска — на средней опоре коленчатого вала — применено на американских моторах «Меркюри». Такое решение делает конструкцию двигателя более компактной и снижает шум впуска, но затрудняет смену клапана.
Получение больших литровых мощностей в двигателях с впускными пластинчатыми клапанами, особенно при малых рабочих объемах, затруднительно, поскольку сами клапаны создают большое аэродинамическое сопротивление, а увеличение размеров впускных окон ведет к увеличению объема кривошипной камеры. Применение же обладающих меньшим сопротивлением менее жестких клапанов ограничивается необходимостью обеспечить прочность и надежность клапана и перегогородки.
Видео:Тохатсу 9.8 доработка лепесткового клапана.Скачать
Золотниковый механизм впуска
Управление впуском смеси производится вращающимся золотником, жестко связанным с коленчатым валом и повторяющим его вращение. Таким образом регулировкой положения на оси и угла сектора золотника можно обеспечить открытие и закрытие впускного окна в любой момент — независимо от положения поршня и степени разрежения в картере. Благодаря этому конструктор имеет возможность максимально приблизить круговую диаграмму двигателя к наивыгоднейшей, оптимальной.
Конструктивно золотники выполняются различно: в виде трубки, цилиндра или диска с вырезами. Первые два варианта не получили большого распространения и применялись на подвесных моторах небольшой мощности («Чайка»), Наиболее часто применяется дисковый золотник из пластмассы или стали, размещаемый непосредственно в картере (и скрепляемый со щечкой коленчатого вала) либо в специальном приливе картера.
В боковой стенке картера прорезано всасывающее окно. При совмещении выреза в диске золотника с этим окном происходит всасывание смеси; при закрытии окна сплошной частью золотника картер разобщается с карбюратором, происходит сжатие. Золотник смазывается маслом, растворенным в горючей смеси; благодаря этому трение о стенки картера незначительно.
Управление всасыванием с дисковыми золотниками, расположенными в картере, применяется на моторах «Вихрь» (золотники из текстолита) и «Нептун» (из капрона, см. рис. 9). На моторе «Салют» дисковый золотник также выполнен из текстолита, но размещен в специальном приливе картера.
Еще раз подчеркнем, что золотниковое управление всасыванием, по сравнению с поршневым и клапанным, обеспечивает наилучшее наполнение кривошипной камеры; это делает перспективным применение золотниковых механизмов в двухтактных двигателях лодочных моторов с высокой литровой мощностью и особенно — в двигателях гоночных моделей.
Более подробное описание работы впускной системы двухтактного двигателя желающие могут найти в книгах: Орлин А. С., Круглов М. Г. «Двухтактные двигатели», Машгиз, 1960 г. и Иваницкий С. Ю., Карманов Б. С., Рогожин В, В., Волков А. Г. «Мотоцикл. Теория, конструкция, расчет», Машиностроение, 1971 г.
🎦 Видео
Обратный клапан на лодочный мотор из жигулевского распылителя карбюратораСкачать
Клапана в шланги нового Hidea 9.8 и другим Т9.8 рекомендуетсяСкачать
Обратный клапан, вместо Тохатсу. Часть 3.Скачать
Китайский клон Tohatsu 9.8 Устраняем косякиСкачать
РЕГУЛИРОВКА КЛАПАНОВ НА ЛОДОЧНОМ МОТОРЕ / РЕГУЛИРОВКА КЛАПАНОВ SUZUKI DF70Скачать
Gladiator 9.8 обратные пропускные клапана от Tohatsu. ( ставим или нет...)Скачать
⚙️🔩🔧Слабое место китайских лодочных моторовСкачать
19 июня 2022 г.Скачать
Замена пластины лепестковых клапанов на Mikatsu 9.9-20Скачать
MIKATSU 9.9 [20]. Обрыв лепесткового клапана. почему?Скачать
Зачем нужен Лепестковый клапан, что он даёт?Скачать
Регулировка клапанов лодочного двигателя Ветерок 8-12.Скачать
Работа обратного клапана. Копия клапана Tohatsu.Скачать
Перепускной клапан ТОХАТСУ 9.8, установка на ХИДЕЯ 9.8Скачать
Регулировка клапанов лодочного мотора HDX F5 (зазор 0.08 - 0.12 мм)Скачать
Yamaha 25 30 топливные клапанаСкачать