2.1 Принцип преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.
2.2 Понятия и определения двигателя.
2.3 Рабочие циклы четырехтактных карбюраторных и дизельных двигателей.
2.4 Назначение кривошипно-шатунного механизма.
2.5 Неподвижные и подвижные группы деталей КШМ: блок цилиндров или блок-картер, головка (головки) блока цилиндров, цилиндры, шатунно-поршневая группа, коленчатый вал, подшипники, картер.
2.6 Установка и крепление двигателей на раме.
Содержание лекции
2.1 Принцип преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала
Двигатель внутреннего сгорания состоит из механизмов и систем, выполняющих различные функции. Рассмотрим устройство и принцип работы двигателя внутреннего сгорания на примере одноцилиндрового бензинового ДВС с внешним смесеобразованием (рис. 2.1). В цилиндре 1 находится поршень с поршневыми кольцами, соединенный с коленчатым валом 11 шатуном 8.
При вращении коленчатого вала поршень совершает возвратно-поступательное движение. Одновременно с коленчатым валом вращается распределительный вал, который через промежуточные детали (толкатель, штангу и коромысло) механизма газораспределения открывает или закрывает впускной и выпускной клапаны. Когда поршень опускается вниз, открывается впускной клапан, и в цилиндр поступает (за счет разрежения) горючая смесь (мелкораспыленное топливо и воздух), приготовленная в карбюраторе, которая при движении поршня вверх сжимается.
Рис. 2.1. Схема одноцилиндрового бензинового ДВС с внешним смесеобразованием:
1 – цилиндр (с картером в сборе); 2 – головка цилиндра; 3 – впускной клапан; 4 – свеча зажигания; 5 – выпускной клапан; 6 – поршень; 7 – поршневой палец; 8 – шатун; 9 – маховик; 10 – поддон; 11 – коленчатый вал
В работающем двигателе при появлении электрической искры между электродами свечи зажигания 4 смесь, сжатая в цилиндре, воспламеняется и сгорает. Вследствие этого образуются газы, имеющие высокую температуру и большое давление. Под давлением расширяющихся газов поршень опускается вниз и через шатун приводит во вращение коленчатый вал. Так преобразуется прямолинейное движение поршня во вращательное движение коленчатого вала. При открытии выпускного клапана и при движении поршня вверх из цилиндра удаляются отработавшие газы.
2.2 Понятия и определения двигателя
С работой двигателя связаны следующие параметры.
Верхняя мертвая точка (ВМТ) – крайнее верхнее положение поршня (рис. 2.2).
Нижняя мертвая точка (НМТ) – крайнее нижнее положение поршня.
Радиус кривошипа – расстояние от оси коренной шейки коленчатого вала до оси его шатунной шейки.
Ход поршня S – расстояние между крайними положениями поршня, равное удвоенному радиусу кривошипа коленчатого вала. Каждому ходу поршня соответствует поворот коленчатого вала на угол 180° (пол-оборота).
Рис. 2.2. Основные положения кривошипно-шатунного механизма:
S – ход поршня; D – диаметр цилиндра; r – радиус кривошипа
Такт – часть рабочего цикла, происходящая за один ход поршня.
Объем камеры сгорания – объем пространства над поршнем при его положении в ВМТ (рис. 2.2).
Рабочий объем цилиндра – объем пространства, освобождаемого поршнем при перемещении его от ВМТ к НМТ.
Полный объем цилиндра – объем пространства над поршнем при нахождении его в НМТ. Очевидно, что полный объем Va цилиндра равен сумме рабочего объема Vh , цилиндра и объема Vc камеры сгорания, т. е. Va = Vh + Vc.
Литраж: двигателя (в л) для многоцилиндровых двигателей – это произведение рабочего объема Vh на число i цилиндров, т. е. Vл = Vh · i.
Степень сжатия ε – отношение полного объема Va цилиндра к объему Vc камеры сгорания, т.е.
Читайте также: Момент подачи топлива в цилиндр
Ход поршня S и диаметр D цилиндра обычно определяют размеры двигателя. Если отношение S/D 2.3 Рабочие циклы четырехтактных карбюраторных и дизельных двигателей
Рабочий цикл четырехтактного карбюраторного двигателя состоит из следующих тактов: впуск, сжатие, рабочий ход (сгорание – расширение), выпуск.
Впуск. Поршень перемещается от ВМТ к НМТ, впускной клапан открыт, в цилиндре возникает разрежение, вследствие чего в него поступает горючая смесь, которая перемешивается с отработавшими газами, оставшимися в небольшом количестве в цилиндре от предыдущего цикла, и образует рабочую смесь. Температура смеси в конце впуска равна 100. 130°С, а давление примерно 0,07. 0,08 МПа (0,7. 0,8 кгс/см2).
Сжатие. Поршень перемещается от НМТ к ВМТ. Оба клапана закрыты, рабочая смесь сжимается, вследствие чего ее температура повышается и улучшается испарение бензина.
К концу такта сжатия давление в цилиндре повышается до 0,8. 1,2 МПа (8. 12 кгс/см2), температура смеси достигает 280. 480 °С.
Рабочий ход (сгорание — расширение). Рабочая смесь в цилиндре воспламеняется электрической искрой и сгорает за 0,001. 0,002 с, выделяя при этом большое количество теплоты. Оба клапана закрыты. Температура сгорания свыше 2000 °С, а давление – 3,5. 4,0 МПа (35. 40 кгс/см2).
Под действием силы давления газов поршень перемещается к НМТ, вращая через шатун коленчатый вал. В процессе расширения газов за счет внутренней энергии топлива совершается механическая работа. В конце расширения давление в цилиндре падает до 0,3. 0,4 МПа (3. 4 кгс/см2), а температура снижается до 800. 1100 °С.
Выпуск. Открывается выпускной клапан. Поршень перемещается к ВМТ и очищает цилиндр от отработавших газов, выталкивая их в атмосферу. Давление в цилиндре к концу такта выпуска снижается до 0,11. 0,12 МПа (1,1. 1,2 кгс/см2), а температура до 300. 400 °С.
Рабочий цикл четырехтактного дизеля, как и рабочий цикл четырехтактного карбюраторного двигателя, состоит из четырех повторяющихся тактов: впуска, сжатия, расширения газов или рабочего хода и выпуска. Однако рабочий цикл дизеля существенно отличается от рабочего цикла карбюраторного двигателя. В цилиндр дизеля поступает чистый воздух, а не горючая смесь. Воздух сжимается с высокой степенью сжатия, вследствие чего значительно повышается его давление и температура. В конце сжатия в нагретый воздух из форсунки впрыскивается мелкораспыленное топливо, воспламеняющееся не от электрической искры, а от соприкосновения с горячим воздухом. Поэтому дизель иногда называют двигателем с воспламенением от сжатия. Горючая смесь в этом двигателе образуется при впрыскивании топлива в цилиндр.
Первый такт — впуск (рисунок 2.3 а). При движении поршня от ВМТ к НМТ в цилиндре создается разрежение. Впускной клапан 5 открывается, и цилиндр наполняется воздухом. В цилиндре воздух смешивается с небольшим количеством отработавших газов. Давление воздуха в цилиндре (у прогретого двигателя) при такте впуска составляет 8 – 9 кПа, а температура достигает 50-80°С.
Рис. 2.3. Схема работы четырехтактного одноцилиндрового дизеля:
а – впуск воздуха, б – сжатие воздуха, в – расширение газов или рабочий ход,
г – выпуск отработавших газов, 1 – цилиндр, 2 – топливный насос,
3 – поршень, 4 – форсунка, 5 – впускной клапан, 6 – выпускной клапан
Второй такт – сжатие (рисунок 2.3 б). Поршень движется от НМТ к ВМТ, впускной 5 и выпускной 6 клапаны закрыты. Объем воздуха уменьшается, а его давление и температура увеличиваются. В конце сжатия давление воздуха внутри цилиндра повышается до 400 — 500 кПа, а температура до 600 — 700°С. Для надежной работы двигателя температура сжатого воздуха в цилиндре должна быть значительно выше температуры самовоспламенения топлива.
Читайте также: Слабая компрессия в одном цилиндре симптомы
Третий такт – расширение газов или рабочий ход (рисунок 2.3 в). Оба клапана закрыты. При положении поршня около ВМТ в сильно нагретый и сжатый воздух из форсунки 4 впрыскивается мелкораспыленное топливо под большим давлением (1300—1850 кПа), создаваемым топливным насосом 2. Топливо перемешивается с воздухом, нагревается, испаряется и воспламеняется. Часть топлива сгорает при движении поршня к ВМТ, т. е. в конце такта сжатия, а другая часть – при движении поршня вниз в начале такта расширения. Образующиеся при сгорании топлива газы увеличивают внутри цилиндра двигателя давление до 600 – 800 кПа и температуру до 1800 – 2000 °С. Горячие газы расширяются и давят на поршень 3, который перемещается от ВМТ к НМТ, совершая рабочий ход.
Четвертый такт – выпуск (рисунок 2.3 г). Поршень перемещается от НМТ к ВМТ и через открытый выпускной клапан 6 вытесняет отработавшие газы из цилиндра. Давление и температура в конце выпуска равны соответственно 11 — 12 кПа и 600-700°С. После такта выпуска рабочий цикл дизеля повторяется в рассмотренной выше последовательности.
2.4 Назначение кривошипно-шатунного механизма
Кривошипно-шатунный механизм преобразует прямолинейное возвратно-поступательное движение поршней, воспринимающих силу давления газов, во вращательное движение коленчатого вала. Детали кривошипно-шатунного механизма можно разделить на две группы: подвижные и неподвижные. К первым относятся поршень с кольцами и поршневым пальцем, шатун, коленчатый вал и маховик, ко вторым – блок цилиндров, головка блока, прокладка головки блока и поддон (картер). В обе группы входят также и крепежные детали.
2.5 Неподвижные и подвижные группы деталей КШМ: блок цилиндров или блок-картер, головка (головки) блока цилиндров, цилиндры, шатунно-поршневая группа, коленчатый вал, подшипники, картер
Блок цилиндров или блок-картер является остовом двигателя. На нем и внутри него располагаются основные механизмы и детали систем двигателя. Блок цилиндров может быть отлит из серого чугуна (двигатели автомобилей ЗИЛ-130, МАЗ-5335, КамАЗ-5320) или из алюминиевого сплава (двигатели автомобилей ГАЗ, УАЗ и др.). Горизонтальная перегородка делит блок цилиндров на верхнюю и нижнюю части. В верхней плоскости блока и в горизонтальной перегородке расточены отверстия для установки гильз цилиндров. В цилиндре, являющемся направляющей при движении поршня, совершается рабочий цикл двигателя. Гильзы могут быть мокрыми или сухими. Гильзу цилиндра называют мокрой, если она омывается жидкостью системы охлаждения, и сухой, если непосредственно не соприкасается с охлаждающей жидкостью.
Видео:Механизм преобразования вращательного движения в поступательноеСкачать
Поступательное и вращательное движение
Движение твердого тела разделяют на виды:
- поступательное;
- вращательное по неподвижной оси;
- плоское;
- вращательное вокруг неподвижной точки;
- свободное.
Первые два из них – простейшие, а остальные представляют как комбинацию основных движений.
Видео:Поступательное и вращательное движения.Скачать
Поступательное криволинейное движение. Угол поворота тела
Поступательным называют движение твердого тела, при котором любая прямая, проведенная в нем, двигается, оставаясь параллельной своему начальному направлению.
Прямолинейное движение является поступательным, но не всякое поступательное будет прямолинейным. При наличии поступательного движения путь тела представляют в виде кривых линий.
Рисунок 1 . Поступательное криволинейное движение кабин колеса обзора
Свойства поступательного движения определяются теоремой: при поступательном движении все точки тела описывают одинаковые траектории и в каждый момент времени обладают одинаковыми по модулю и направлению значениями скорости и ускорения.
Читайте также: Цилиндр kale kilit 164 obs
Следовательно, поступательное движение твердого тела определено движением любой его точки. Это сводится к задаче кинематики точки.
Если имеется поступательное движение, то общая скорость для всех точек тела υ → называется скоростью поступательного движения, а ускорение a → — ускорением поступательного движения. Изображение векторов υ → и a → принято указывать приложенными в любой точке тела.
Понятие о скорости и ускорении тела имеют смысл только при наличии поступательного движения. В других случаях точки тела характеризуются разными скоростями и ускорениями.
Вращательное движение абсолютно твердого тела вокруг неподвижной оси – это движение всех точек тела, находящихся в плоскостях, перпендикулярных неподвижной прямой, называемой осью вращения, и описывание окружностей, центры которых располагаются на этой оси.
Чтобы определить положение вращающегося тела, необходимо начертить ось вращения, вдоль которой направляется ось A z , полуплоскость – неподвижную, проходящую через тело и движущуюся с ним, как показано на рисунке 2 .
Рисунок 2 . Угол поворота тела
Положение тела в любой момент времени будет характеризоваться соответствующим знаком перед углом φ между полуплоскостями, который получил название угол поворота тела. При его откладывании, начиная от неподвижной плоскости (направление против хода часовой стрелки), угол принимает положительное значение, против плоскости – отрицательное. Измерение угла производится в радианах. Для определения положения тела в любой момент времени следует учитывать зависимость угла φ от t , то есть φ = f ( t ) . Уравнение является законом вращательного движения твердого тела вокруг неподвижной оси.
При наличии такого вращения значения углов поворота радиус-вектора различных точек тела будут аналогичны.
Вращательное движение твердого тела характеризуется угловой скоростью ω и угловым ускорением ε .
Уравнения вращательного движения получают из уравнений поступательного, используя замены перемещения S на угловое перемещение φ , скорость υ на угловую скорость ω , а ускорение a на угловое ε .
Видео:Поступательное и вращательное движенияСкачать
Вращательное и поступательное движение. Формулы
Поступательное | Вращательное |
Равномерное | |
s = υ · t | φ = ω · t |
υ = c o n s t | ω = c o n s t |
a = 0 | ε = 0 |
Равнопеременное | |
s = υ 0 t ± a t 2 2 | φ = ω 0 t ± ε · t 2 2 |
υ = υ 0 ± a · t | ω = ω 0 ± ε · t |
a = c o n s t | ε = c o n s t |
Неравномерное | |
s = f ( t ) | φ = f ( t ) |
υ = d s d t | ω = d φ d t |
a = d υ d t = d 2 s d t 2 | ε = d ω d t = d 2 φ d t 2 |
Видео:Как преобразовать вращательное движение в возвратно - поступательное.Скачать
Задачи на вращательное движение
Дана материальная точка, которая движется прямолинейно соответственно уравнению s = t 4 + 2 t 2 + 5 . Вычислить мгновенную скорость и ускорение точки в конце второй секунды после начала движения, среднюю скорость и пройденный за этот промежуток времени путь.
Дано: s = t 4 + 2 t 2 + 5 , t = 2 с .
Найти: s ; υ ; » open=» υ ; α .
υ = d s d t = 4 t 3 + 4 t = 4 · 2 3 + 4 · 2 = 37 м / с .
» open=» υ = ∆ s ∆ t = 29 2 = 14 , 5 м / с .
a = d υ d t = 12 t 2 + 4 = 12 · 2 2 + 4 = 52 м / с 2 .
Ответ: s = 29 м ; υ = 37 м / с ; » open=» υ = 14 , 5 м / с ; α = 52 м / с 2
Задано тело, вращающееся вокруг неподвижной оси по уравнению φ = t 4 + 2 t 2 + 5 . Произвести вычисление мгновенной угловой скорости, углового ускорения тела в конце 2 секунды после начала движения, средней угловой скорости и угла поворота за данный промежуток времени.
Дано: φ = t 4 + 2 t 2 + 5 , t = 2 с .
Найти: φ ; ω ; » open=» ω ; ε .
φ = 2 4 + 2 · 2 2 + 5 = 29 р а д .
ω = d φ d t = 4 t 3 + 4 t = 4 · 2 3 + 4 · 2 = 37 р а д / с .
» open=» ω = ∆ φ ∆ t = 29 2 = 14 , 5 р а д / с .
ε = d ω d t = 12 2 + 4 = 12 · 2 2 + 4 = 52 р а д / с 2 .
Ответ: φ = 29 р а д ; ω = 37 р а д / с ; » open=» ω = 14 , 5 р а д / с ; ε = 52 р а д / с 2 .
📸 Видео
Преобразование возвратно поступательного движения во вращательноеСкачать
ПРЕОБРАЗОВАНИЕ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ ВО ВРАЩАТЕЛЬНОЕ!Скачать
Физика 10 класс (Урок№5 - Поступательное движение. Вращательное движение твердого тела.)Скачать
Кривошипно шатунный механизм обеспечивающий возвратно поступательное прямолинейное движениеСкачать
Вращательное движение. 10 класс.Скачать
Превращение вращательного движения в возвратно поступательноеСкачать
Механика вращательного движения [Физзадачи #35]Скачать
Механизм Вюрта. Преобразование возвратно-поступательного движения во вращение.Скачать
12 Поступательное и вращательное движение телСкачать
ИЗУЧЕНИЕ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛАСкачать
Поступательное движение. Вращательное движение твердого телаСкачать
Силой мысли можно увидеть поступательное движение сверху вниз или вращательное вокруг осиСкачать
Кинематика: Поступательное и вращательное движение твёрдого тела. Центр онлайн-обучения «Фоксфорд»Скачать
Кинематика вращательного движения. ТермехСкачать
Скатывание цилиндров с наклонной плоскостиСкачать