Вращение геометрических тел цилиндр с конусом

Авто помощник

Тела вращения – это объемные тела, которые возникают при вращении некой плоской фигуры, которая ограничена кривой и крутится вокруг оси, лежащей в той же плоскости. К телам вращения относятся цилиндр, конус и шар.

Цилиндр — это объемное тело, которое получается при вращении прямоугольника вокруг одной из его сторон.

Возьмем прямоугольник АВСD. Будем вращать этот прямоугольник против часовой стрелки вокруг стороны АD.

Вращение геометрических тел цилиндр с конусом

Прямая АDось цилиндра.

Отрезок АDвысота цилиндра.

Основания цилиндра — два равных круга образованных при вращении сторон АВ и DC (круги равные, т.к. стороны АВ и DC равны как противоположные стороны прямоугольника).

Радиус цилиндра — радиус оснований цилиндра.

Цилиндрическая поверхность (или боковая поверхность цилиндра) — поверхность, образованная при вращении стороны ВС.

Образующие цилиндраотрезки, из которых составлена боковая поверхность цилиндра (на рисунке выше указаны образующие ВС и ЕК).

Определение

Конус — это объемное тело, которое получается при вращении прямоугольного треугольника вокруг одной из сторон, образующих прямой угол.

Возьмем прямоугольный треугольник АВС. Будем вращать этот треугольник вокруг стороны АС.

Вращение геометрических тел цилиндр с конусом

Прямая АСось косинуса.

Отрезок АСвысота конуса.

Основание конусакруг, образованный при вращении стороны ВС.

Коническая поверхность (или боковая поверхность конуса) — поверхность, образованная при вращении стороны АВ.

Образующие конусаотрезки, из которых составлена боковая поверхность конуса (на рисунке выше указаны образующие АВ, АВ1 и АВ2).

Определение

Поделись с друзьями в социальных сетях:

Видео:Тела вращения. Урок 1 Цилиндр.Конус.Шар.Скачать

Тела вращения. Урок 1 Цилиндр.Конус.Шар.

Цилиндр, конус, шар

Цилиндр, конус, шар

Цилиндр – тело, ограниченное цилиндрической поверхностью и двумя кругами с границами $М$ и $М_1$. Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги – основаниями цилиндра.

Образующие цилиндрической поверхности называются образующими цилиндра, на рисунке образующая $L$.

Цилиндр называется прямым, если его образующие перпендикулярны основаниям. Осевое сечение цилиндра — это прямоугольник, у которого одна сторона равна диаметру основания, а вторая – высоте цилиндра.

Основные понятия и свойства цилиндра:

  1. Основания цилиндра равны и лежат в параллельных плоскостях.
  2. Все образующие цилиндра параллельны и равны.
  3. Радиусом цилиндра называется радиус его основания ($R$).
  4. Высотой цилиндра называется расстояние между плоскостями оснований (в прямом цилиндре высота равна образующей).
  5. Осью цилиндра называется отрезок, соединяющий центры оснований ($ОО_1$).
  6. Если радиус или диаметр цилиндра увеличить в n раз, то объем цилиндра увеличится в $n^2$ раз.
  7. Если высоту цилиндра увеличить в m раз, то объем цилиндра увеличится в то же количество раз.
  8. Если призму вписать в цилиндр, то ее основаниями будут являться равные многоугольники, вписанные в основание цилиндра, а боковые ребра — образующими цилиндра.
  9. Если цилиндр вписан в призму, то ее основания — равные многоугольники, описанные около оснований цилиндра. Плоскости граней призмы касаются боковой поверхности цилиндра.
  10. Если в цилиндр вписана сфера, то радиус сферы равен радиусу цилиндра и равен половине высоты цилиндра.

Читайте также: В цилиндр вписана правильная n угольная призма найдите объем призмы

Площадь поверхности и объем цилиндра.

Площадь боковой поверхности цилиндра равна произведению длины окружности основания на высоту.

Площадь поверхности цилиндра равна сумме двух площадей оснований и площади боковой поверхности.

Объем цилиндра равен произведению площади основания на высоту.

Объем части цилиндра, в основании которого лежит сектор: $V= / $, где $n°$ — это градусная мера центрального угла, отсекающего заданный сектор.

Цилиндр описан около шара. Объём цилиндра равен $30$. Найдите объём шара.

Если в цилиндр вписан шар, то радиус цилиндра равен радиусу шара, а высота цилиндра в два раза больше радиуса шара.

Распишем формулы объема цилиндра и шара.

Далее надо сравнить во сколько раз объем цилиндра больше объема шара, для этого разделим объемы друг на друга.

Объем цилиндра больше объема шара в $1.5$ раза, следовательно, чтобы найти объем шара, надо объем цилиндра разделить на $1.5$.

Конусом (круговым конусом) называется тело, которое состоит из круга, точки, не лежащей в плоскости этого круга, и всех отрезков, соединяющих заданную точку с точками круга.

Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими и обозначаются (l).

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. Ось прямого конуса и его высота равны.

  1. Все образующие конуса равны.
  2. Осевым сечением конуса является равнобедренный треугольник, основание которого равно двум радиусам, а боковые стороны равны образующим конуса.
  3. Если боковая поверхность конуса – полукруг, то осевым сечением является равносторонний треугольник, угол при вершине равен $60°$.
  4. Если радиус или диаметр конуса увеличить в n раз, то его объем увеличится в $n^2$ раз.
  5. Если высоту конуса увеличить в m раз, то объем конуса увеличится в то же количество раз.

Площадь поверхности и объем конуса.

Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую.

Площадь поверхности конуса равна сумме площади основания и площади боковой поверхности.

Объем конуса равен трети произведения площади основания на высоту.

Объем части конуса, в основании которого лежит сектор: $V= / $, где $n°$ — это градусная мера центрального угла, отсекающего заданный сектор.

Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии ($R$) от данной точки (центра сферы $О$).

Тело, ограниченное сферой, называется шаром.

Осевое сечение шара это круг, радиус которого равен радиусу шара. Осевым сечением является самый большой круг шара.

Площадь поверхности сферы: $S_ =4π·R^2=π·d^2$, где $R$ — радиус сферы, $d$ — диаметр сферы

Объем шара: $V= / = / $, где $R$ — радиус шара, $d$ — диаметр шара.

Если радиус или диаметр шара увеличить в n раз, то площадь поверхности увеличится в $n^2$ раз, а объем в $n^3$ раз.

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$:

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Читайте также: Шарошка корунд цилиндр 20х25 6мм

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом ($sin$) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом ($tg$) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.

Значения тригонометрических функций некоторых углов:

$α$$30$$45$$60$
$sinα$$ / $$ / $$ / $
$cosα$$ / $$ / $$ / $
$tgα$$ / $$1$$√3$
$ctgα$$√3$$1$$ / $

Признаки подобия треугольников:

  1. Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
  2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между ними равны, то такие треугольники подобны.
  3. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Видео:Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)Скачать

Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)

Геометрия. 11 класс

Конспект урока

Урок №10. Комбинации тел вращения

Перечень вопросов, рассматриваемых в теме:

  • комбинации конуса и цилиндра, конуса и усеченного конуса, цилиндра и усеченного конуса, нескольких сфер;
  • цилиндр, описанный около конуса, конус, описанный около цилиндра, усеченный конус, описанный около конуса и цилиндра;
  • цилиндр, вписанный в конус, конус, вписанный в цилиндр, усеченный конус, вписанный в конус и цилиндр.

Цилиндр вписан в конус, если одно основание цилиндра лежит в плоскости основания конуса, а окружность другого основания — на боковой поверхности конуса. Конус, соответственно, в этом случае называется описанным около цилиндра.

Конус вписан в цилиндр, если основание конуса совпадает с основанием цилиндра, а вершина совпадает с центром другого основания цилиндра. Цилиндр, соответственно, в этом случае называется описанным около конуса.

Конус вписан в другой конус, если его вершина лежит в центре основания второго конуса, а основание лежит на боковой поверхности.

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия. 10–11 классы : учеб. для общеобразоват. организаций : базовый и углубл. уровни – М. : Просвещение, 2014. – 255, сс. 136-147.

Шарыгин И.Ф., Геометрия. 10–11 кл. : учеб. для общеобразоват. учреждений – М.: Дрофа, 2009. – 235, : ил., ISBN 978–5–358–05346–5, сс. 77-84.

Открытые электронные ресурсы:

Теоретический материал для самостоятельного изучения

1. Комбинации цилиндра и конуса

Цилиндр вписан в конус, если одно основание цилиндра лежит в плоскости основания конуса, а окружность другого основания — на боковой поверхности конуса. Конус, соответственно, в этом случае называется описанным около цилиндра.

В любой конус можно вписать цилиндр.

Вращение геометрических тел цилиндр с конусом

Оси конуса и вписанного в него цилиндра совпадают. Верхнее основание цилиндра совпадает с сечением конуса плоскостью, параллельной основанию.

Осевое сечение цилиндра, вписанного в конус — представляет собой равнобедренный треугольник с вписанным в него прямоугольником.

Вращение геометрических тел цилиндр с конусом

NF=KM=h (l)— образующие цилиндра.

Вращение геометрических тел цилиндр с конусом

∆SOB∆KMB (по общему острому углу B)

Вращение геометрических тел цилиндр с конусом, то есть: Вращение геометрических тел цилиндр с конусом.

Отношение боковой поверхности конуса к боковой поверхности вписанного цилиндра (через радиусы основания и образующие)

Вращение геометрических тел цилиндр с конусом

Вращение геометрических тел цилиндр с конусом, то есть Вращение геометрических тел цилиндр с конусом.

Вращение геометрических тел цилиндр с конусом

.

Конус вписан в цилиндр, если основание конуса совпадает с основанием цилиндра, а вершина совпадает с центром другого основания цилиндра. Цилиндр, соответственно, в этом случае называется описанным около конуса.

В любой цилиндр можно вписать конус.

Вращение геометрических тел цилиндр с конусом

OS — ось цилиндра и ось конуса, высота цилиндра и конуса

OA — радиус конуса и радиус цилиндра

Вращение геометрических тел цилиндр с конусом

CA=DB=l — образующие цилиндра

∆SOA, ∆SCA, ∆SDB и ∆SOB — прямоугольные

∆SOA=∆SCA, ∆SDB = ∆SOB, поэтому 2S∆ASB=2SACDB.

Отношение боковой поверхности конуса к боковой поверхности описанного около него цилиндра (через радиус основания и высоту)

Вращение геометрических тел цилиндр с конусом

Вращение геометрических тел цилиндр с конусом, то есть Вращение геометрических тел цилиндр с конусом.

Вращение геометрических тел цилиндр с конусом

.

2. Комбинация двух конусов

Конус вписан в другой конус, если его вершина лежит в центре основания второго конуса, а основание лежит на боковой поверхности.

Вращение геометрических тел цилиндр с конусом

OS — ось конусов, высота большого конуса

OA — радиус большого конуса

Вращение геометрических тел цилиндр с конусом

Вращение геометрических тел цилиндр с конусом

В дне кашпо, имеющего форму конуса с площадью боковой поверхности 15π дм и радиусом основания 3 дм, сделано отверстие для того чтобы в него можно было вставить горшок для цветов, имеющий форму цилиндра. Определите радиус этого отверстия так, чтобы горшок для цветов был вписан в конус и имел форму равностороннего цилиндра.

Вращение геометрических тел цилиндр с конусомВращение геометрических тел цилиндр с конусом

AO=R – радиус основания конуса

Рассмотрим подобные треугольники AKC и AOS.

Вращение геометрических тел цилиндр с конусом

В них: .

OS=4 (из прямоугольного треугольника AOS с катетом 3 и гипотенузой 5.

Вращение геометрических тел цилиндр с конусом

KC=2r

Примеры и разбор решения заданий тренировочного модуля

1. В конус, осевым сечением которого является прямоугольный треугольник, вписан равносторонний цилиндр. Найдите отношение площадей полных поверхностей конуса и цилиндра.

Сделаем чертеж осевого сечения

Вращение геометрических тел цилиндр с конусом

Обозначим радиус цилиндра ЕО= r. Выразим через него все остальные элементы тел вращения.

Так как цилиндр равносторонний, то высота цилиндра равна h=СЕ=2r.

Так как сечение конуса ASB — прямоугольный треугольник и SO — его высота, то SO=OB. То есть высота конуса H равна радиусу R.

Вращение геометрических тел цилиндр с конусом

Образующая конуса равна L=SA=R .

∆SHDВращение геометрических тел цилиндр с конусом∆DKBВращение геометрических тел цилиндр с конусом∆OSB — прямоугольные равнобедренные треугольники.

Вращение геометрических тел цилиндр с конусом

Поэтому R=3r, образующая конуса равна SA=3r .

Выразим площади полных поверхностей конуса и цилиндра.

Sп.п.к. =πR(R+L)= π3r(3r+3rВращение геометрических тел цилиндр с конусом)=9πr 2 (1+ Вращение геометрических тел цилиндр с конусом)

Вращение геометрических тел цилиндр с конусом

Теперь найдем отношение: .

Вращение геометрических тел цилиндр с конусом

Ответ: .

2. Усеченный конус вписан в цилиндр. Найдите площадь полной поверхности усеченного конуса, если радиус цилиндра равен 16, высота равна 6 а радиус меньшего основания усеченного конуса в два раза меньше радиуса цилиндра.

Вращение геометрических тел цилиндр с конусом

Сделаем чертеж осевого сечения:

Вращение геометрических тел цилиндр с конусом

O1B — радиус меньшего основания усеченного конуса.

OC- радиус большего основания усеченного конуса и радиус цилиндра.

BH — высота цилиндра и высота усеченного конуса

По условию OC=2O1B, ОС=16, BH=6.

Так как OC=2O1B и ОС=16, то O1B=8.

Рассмотрим треугольник BHC.

В нем HC=OC-OH=8, BH=6. По теореме Пифагора BC=10.

Теперь нам известен радиус меньшего основания усеченного конуса: он равен 8, радиус большего основания усеченного конуса: он равен 16, образующая усеченного конуса: она равна 10.

Найдем площадь боковой поверхности:

Площадь полной поверхности найдем, прибавив две площади оснований:

💡 Видео

Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Как начертить КОНУС С ВЫРЕЗОМ (чертеж + аксонометрия)Скачать

Как начертить КОНУС С ВЫРЕЗОМ (чертеж + аксонометрия)

Как построить ЛИНИЮ ПЕРЕСЕЧЕНИЯ двух ЦИЛИНДРОВСкачать

Как построить ЛИНИЮ ПЕРЕСЕЧЕНИЯ двух ЦИЛИНДРОВ

Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать

Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)

Конус. 11 класс.Скачать

Конус. 11 класс.

Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать

Миникурс по геометрии. Куб, призма, цилиндр и конус

Цилиндр, конус, шар, 6 классСкачать

Цилиндр, конус, шар, 6 класс

Пересечение поверхностей полусферы и цилиндра. Пошаговое видео. Инженерная графикаСкачать

Пересечение поверхностей полусферы и цилиндра. Пошаговое видео. Инженерная графика

Задание 50. Построение ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ЦИЛИНДРОВСкачать

Задание 50. Построение ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ЦИЛИНДРОВ

ЦИЛИНДР // КОНУС // ШАРСкачать

ЦИЛИНДР // КОНУС // ШАР

ЦИЛИНДР. КОНУС. ШАР. ЕГЭ. ЗАДАНИЕ 5.СТЕРЕОМЕТРИЯСкачать

ЦИЛИНДР. КОНУС. ШАР. ЕГЭ. ЗАДАНИЕ 5.СТЕРЕОМЕТРИЯ

Линия пересечения двух поверхностей вращения (Метод вспомогательных сфер)Скачать

Линия пересечения двух поверхностей вращения (Метод вспомогательных сфер)

Геометрия 11 класс (Урок№7 - Конус.)Скачать

Геометрия 11 класс (Урок№7 - Конус.)

Геометрия 9 класс (Урок№34 - Тела и поверхности вращения.)Скачать

Геометрия 9 класс (Урок№34 - Тела и поверхности вращения.)

Пересечение конуса и цилиндраСкачать

Пересечение конуса и цилиндра

Построение линии пересечения поверхности конуса с проецирующей плоскостьюСкачать

Построение линии пересечения поверхности конуса с проецирующей плоскостью

КАК СДЕЛАТЬ КОНУС ИЗ БУМАГИ? КАК СДЕЛАТЬ ГЕОМЕТРИЧЕСКИЕ ТЕЛА ВРАЩЕНИЯ? ГЕОМЕТРИЯ. | #RAIDOTVСкачать

КАК СДЕЛАТЬ КОНУС ИЗ БУМАГИ? КАК СДЕЛАТЬ ГЕОМЕТРИЧЕСКИЕ ТЕЛА ВРАЩЕНИЯ? ГЕОМЕТРИЯ. | #RAIDOTV
Поделиться или сохранить к себе:
Технарь знаток