Все формулы для цилиндра по геометрии

Все формулы для цилиндра по геометрии

Авто помощник

Если из каждой точки окружности опустить перпендикуляр на плоскость β , то основания этих перпендикуляров образуют на плоскости β окружность радиуса r , центр O1 которой является основанием перпендикуляра, опущенного из точки O на плоскость β (рис.2).

Все формулы для цилиндра по геометрии

Все формулы для цилиндра по геометрии

Все формулы для цилиндра по геометрии

Отрезок перпендикуляра, опущенного из любой точки окружности с центром O на плоскость β , который заключен между плоскостями α и β , называют образующей цилиндра .

Совокупность всех образующих цилиндра называют цилиндрической поверхностью .

Фигуру, ограниченную цилиндрической поверхностью и плоскостями α и β, называют цилиндром .

Отрезок OO1 называют осью цилиндра .

Радиус окружности Радиус окружности на плоскости α с центром в точке O называют радиусом цилиндра .

Круги с центрами O и O1 на плоскостях α и β , называют основаниями цилиндра .

Замечание 1. Цилиндрическую поверхность часто называют боковой поверхностью цилиндра . Боковая поверхность цилиндра и основания цилиндра вместе составляют полную поверхность цилиндра .

Замечание 2. Каждая образующая цилиндра параллельна оси цилиндра, а длина каждой образующей цилиндра равна высоте цилиндра.

Замечание 3. Прямая OO1 является осью симметрии цилиндра, а середина отрезка OO1 является центром симметрии цилиндра.

Видео:Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)Скачать

Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)

Сечения цилиндра

Определение 2. Сечением цилиндра называют пересечение цилиндра с плоскостью.
Если сечение проходит через ось цилиндра, то такое сечение называют осевым сечением цилиндра (рис. 3).

Все формулы для цилиндра по геометрии

На рисунке 3 изображено одно из осевых сечений цилиндра – прямоугольник AA1B1B .

Замечание 4. Каждое осевое сечение цилиндра с радиусом r и высотой h является прямоугольником со сторонами 2r и h .

Определение 3. Перпендикулярным сечением цилиндра называют сечение, перпендикулярное оси цилиндра (рис. 4).

Все формулы для цилиндра по геометрии

Замечание 5. Любым перпендикулярным сечением цилиндра будет круг радиуса r .

Замечание 6. Более подробно случаи взаимного расположения цилиндра и плоскости рассматриваются в разделе нашего справочника «Взаимное расположение цилиндра и плоскости в пространстве».

Видео:Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать

Миникурс по геометрии. Куб, призма, цилиндр и конус

Объем цилиндра. Площадь боковой поверхности цилиндра.
Площадь полной поверхности цилиндра

Для цилиндра с радиусом r и высотой h (рис. 5)

Все формулы для цилиндра по геометрии

введем следующие обозначения

Vобъем цилиндра
Sбокплощадь боковой поверхности цилиндра
Sполнплощадь полной поверхности цилиндра
Sоснплощадь основания цилиндра

Тогда справедливы следующие формулы для вычисления объема, площади боковой и полной поверхности цилиндра:

при помощи предельного перехода, когда число сторон правильной призмы n неограниченно возрастает. Однако доказательство этого факта выходит за рамки школьной программы.

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Цилиндр, конус, шар

Цилиндр, конус, шар

Цилиндр – тело, ограниченное цилиндрической поверхностью и двумя кругами с границами $М$ и $М_1$. Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги – основаниями цилиндра.

Читайте также: Ремонт блоков цилиндров в туле

Образующие цилиндрической поверхности называются образующими цилиндра, на рисунке образующая $L$.

Цилиндр называется прямым, если его образующие перпендикулярны основаниям. Осевое сечение цилиндра — это прямоугольник, у которого одна сторона равна диаметру основания, а вторая – высоте цилиндра.

Основные понятия и свойства цилиндра:

  1. Основания цилиндра равны и лежат в параллельных плоскостях.
  2. Все образующие цилиндра параллельны и равны.
  3. Радиусом цилиндра называется радиус его основания ($R$).
  4. Высотой цилиндра называется расстояние между плоскостями оснований (в прямом цилиндре высота равна образующей).
  5. Осью цилиндра называется отрезок, соединяющий центры оснований ($ОО_1$).
  6. Если радиус или диаметр цилиндра увеличить в n раз, то объем цилиндра увеличится в $n^2$ раз.
  7. Если высоту цилиндра увеличить в m раз, то объем цилиндра увеличится в то же количество раз.
  8. Если призму вписать в цилиндр, то ее основаниями будут являться равные многоугольники, вписанные в основание цилиндра, а боковые ребра — образующими цилиндра.
  9. Если цилиндр вписан в призму, то ее основания — равные многоугольники, описанные около оснований цилиндра. Плоскости граней призмы касаются боковой поверхности цилиндра.
  10. Если в цилиндр вписана сфера, то радиус сферы равен радиусу цилиндра и равен половине высоты цилиндра.

Площадь поверхности и объем цилиндра.

Площадь боковой поверхности цилиндра равна произведению длины окружности основания на высоту.

Площадь поверхности цилиндра равна сумме двух площадей оснований и площади боковой поверхности.

Объем цилиндра равен произведению площади основания на высоту.

Объем части цилиндра, в основании которого лежит сектор: $V= / $, где $n°$ — это градусная мера центрального угла, отсекающего заданный сектор.

Цилиндр описан около шара. Объём цилиндра равен $30$. Найдите объём шара.

Если в цилиндр вписан шар, то радиус цилиндра равен радиусу шара, а высота цилиндра в два раза больше радиуса шара.

Распишем формулы объема цилиндра и шара.

Далее надо сравнить во сколько раз объем цилиндра больше объема шара, для этого разделим объемы друг на друга.

Объем цилиндра больше объема шара в $1.5$ раза, следовательно, чтобы найти объем шара, надо объем цилиндра разделить на $1.5$.

Конусом (круговым конусом) называется тело, которое состоит из круга, точки, не лежащей в плоскости этого круга, и всех отрезков, соединяющих заданную точку с точками круга.

Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими и обозначаются (l).

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. Ось прямого конуса и его высота равны.

  1. Все образующие конуса равны.
  2. Осевым сечением конуса является равнобедренный треугольник, основание которого равно двум радиусам, а боковые стороны равны образующим конуса.
  3. Если боковая поверхность конуса – полукруг, то осевым сечением является равносторонний треугольник, угол при вершине равен $60°$.
  4. Если радиус или диаметр конуса увеличить в n раз, то его объем увеличится в $n^2$ раз.
  5. Если высоту конуса увеличить в m раз, то объем конуса увеличится в то же количество раз.

Читайте также: Чертеж гильзы цилиндра зил 431410

Площадь поверхности и объем конуса.

Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую.

Площадь поверхности конуса равна сумме площади основания и площади боковой поверхности.

Объем конуса равен трети произведения площади основания на высоту.

Объем части конуса, в основании которого лежит сектор: $V= / $, где $n°$ — это градусная мера центрального угла, отсекающего заданный сектор.

Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии ($R$) от данной точки (центра сферы $О$).

Тело, ограниченное сферой, называется шаром.

Осевое сечение шара это круг, радиус которого равен радиусу шара. Осевым сечением является самый большой круг шара.

Площадь поверхности сферы: $S_ =4π·R^2=π·d^2$, где $R$ — радиус сферы, $d$ — диаметр сферы

Объем шара: $V= / = / $, где $R$ — радиус шара, $d$ — диаметр шара.

Если радиус или диаметр шара увеличить в n раз, то площадь поверхности увеличится в $n^2$ раз, а объем в $n^3$ раз.

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$:

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом ($sin$) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом ($tg$) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.

Значения тригонометрических функций некоторых углов:

$α$$30$$45$$60$
$sinα$$ / $$ / $$ / $
$cosα$$ / $$ / $$ / $
$tgα$$ / $$1$$√3$
$ctgα$$√3$$1$$ / $

Признаки подобия треугольников:

  1. Если два угла одного треугольника соответственно равны двум углам другого треугольника, то такие треугольники подобны.
  2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между ними равны, то такие треугольники подобны.
  3. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Видео:ЦИЛИНДР. КОНУС. ШАР. ЕГЭ. ЗАДАНИЕ 5.СТЕРЕОМЕТРИЯСкачать

ЦИЛИНДР. КОНУС. ШАР. ЕГЭ. ЗАДАНИЕ 5.СТЕРЕОМЕТРИЯ

Что такое цилиндр: определение, элементы, виды, варианты сечения

В данной публикации мы рассмотрим определение, основные элементы, виды и возможные варианты сечения одной из самых распространенных трехмерных геометрических фигур – цилиндра. Представленная информация сопровождается наглядными рисунками для лучшего восприятия.

Видео:Конус. 11 класс.Скачать

Конус. 11 класс.

Определение цилиндра

Далее мы подробно остановимся на прямом круговом цилиндре как самой популярной разновидности фигуры. Другие ее виды будут перечислены в последнем разделе данной публикации.

Прямой круговой цилиндр – это геометрическая фигура в пространстве, полученная путем вращения прямоугольника вокруг своей стороны или оси симметрии. Поэтому такой цилиндр иногда называют цилиндром вращения.

Все формулы для цилиндра по геометрии

Цилиндр на рисунке выше получен в результате вращения прямоугольного треугольника ABCD вокруг оси O1O2 на 180° или прямоугольников ABO2O1/O1O2CD вокруг стороны O1O2 на 360°.

Видео:Запоминаем ВСЕ формулы по стереометрии за 5 мин! №2 МАТЕМАТИКА ПРОФИЛЬСкачать

Запоминаем ВСЕ формулы по стереометрии за 5 мин! №2 МАТЕМАТИКА ПРОФИЛЬ

Основные элементы цилиндра

  • Основания цилиндра – два одинаковых по размеру/площади круга с центрами в точках O1 и O2.
  • R – радиус оснований цилиндра, отрезки AD и BC – диаметры (d).
  • O1O2 – ось симметрии цилиндра, одновременно является его высотой (h).
  • l (AB, CD) – образующие цилиндра и одновременно с этим стороны прямоугольника ABCD. Равны высоте фигуры.

Развёртка цилиндра – боковая (цилиндрическая) поверхность фигуры, развернутая в плоскость; является прямоугольником.

Все формулы для цилиндра по геометрии

  • длина данного прямоугольника равна длине окружности основания цилиндра ( 2πR );
  • ширина равна высоте/образующей цилиндра.

Примечание: формулы для нахождения площади поверхности и объема цилиндра представлены в отдельных публикациях.

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Геометрические тела. Цилиндр.

Цилиндр − это геометрическое тело, которое ограничено цилиндрической поверхностью и 2-мя плоскостями, которые параллельны и пересекают ее.

ABCDEFG и abcdefg — это основания цилиндра. Расстояние между основаниями (KM)высота цилиндра.

Цилиндрические сечения боковой поверхности кругового цилиндра.

Сечения, которые идут параллельно к основанию, будут являться кругами одного радиуса. Сечения, которые параллельны образующим цилиндра — это пары параллельных прямых (AB || CD). Сечения, не параллельные ни основанию, ни образующим, являются эллипсами.

Цилиндрическая поверхность образуется посредством движения прямой параллельно самой себе. Точка прямой, которая выделена, перемещается вдоль заданной плоской кривой – направляющей. Эта прямая называется образующей цилиндрической поверхности.

Прямой цилиндр – это такой цилиндр, в котором образующие перпендикулярны основанию. Если образующие цилиндра не перпендикулярны основанию, то это будет наклонный цилиндр.

Круговой цилиндр – цилиндр, основанием которого является круг.

Круглый цилиндр – такой цилиндр, который одновременно и прямой, и круговой.

Прямой круговой цилиндр определяется радиусом основания R и образующей L, которая равна высоте цилиндра H.

Призма – это частный случай цилиндра.

Все формулы для цилиндра по геометрии

Видео:Цилиндр, конус и шар в задании 2 | Математика ЕГЭ 2023 | УмскулСкачать

Цилиндр, конус и шар в задании 2 | Математика ЕГЭ 2023 | Умскул

Формулы нахождения элементов цилиндра.

Площадь боковой поверхности прямого кругового цилиндра:

Площадь полной поверхности прямого кругового цилиндра:

Объем прямого кругового цилиндра:

Прямой круговой цилиндр со скошенным основанием либо кратко скошенный цилиндр определяют с помощью радиуса основания R, минимальной высоты h1 и максимальной высоты h2.

Все формулы для цилиндра по геометрии

Площадь боковой поверхности скошенного цилиндра:

Площадь оснований скошенного цилиндра:

Все формулы для цилиндра по геометрии

Площадь полной поверхности скошенного цилиндра:

Все формулы для цилиндра по геометрии

Объем скошенного цилиндра:

Sбок — площадь боковой поверхности;

📸 Видео

Цилиндр - расчёт площади, объёма.Скачать

Цилиндр - расчёт площади, объёма.

Объем цилиндра. Практическая часть. 11 класс.Скачать

Объем цилиндра. Практическая часть. 11 класс.

Студенты российского вуза разработали вечный двигатель #вечныйдвигатель #изобретенияСкачать

Студенты российского вуза разработали вечный двигатель #вечныйдвигатель #изобретения

Как находить площадь любой фигуры? Геометрия | МатематикаСкачать

Как находить площадь любой фигуры? Геометрия | Математика

ЦИЛИНДР геометрия егэ по математике профильный уровень ЯщенкоСкачать

ЦИЛИНДР геометрия егэ по математике профильный уровень Ященко

60. Площадь поверхности цилиндраСкачать

60. Площадь поверхности цилиндра

59. Понятие цилиндраСкачать

59. Понятие цилиндра

ГЕОМЕТРИЯ 11 класс: Цилиндр. Площадь поверхностиСкачать

ГЕОМЕТРИЯ 11 класс: Цилиндр. Площадь поверхности

Полезная формула по геометрииСкачать

Полезная формула по геометрии

ВСЯ СТЕРЕОМЕТРИЯ НА БАЗОВЫЙ ЕГЭ-2024 // КОНЦЕНТРАТ // МАТЕМАТИКАСкачать

ВСЯ СТЕРЕОМЕТРИЯ НА БАЗОВЫЙ ЕГЭ-2024 // КОНЦЕНТРАТ // МАТЕМАТИКА

Запомни: все формулы для площади треугольникаСкачать

Запомни: все формулы для площади треугольника

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДРСкачать

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДР
Поделиться или сохранить к себе:
Технарь знаток