Екатерина Искаева
Знакомство с геометрическим телом — Цилиндром.
Задачи: 1. Формировать представление о цилиндре, умение распознавать цилиндр в предметах окружающей обстановки.
2. Закреплять счет в пределах 5, геометрические представления детей, умение находить общие свойства предметов.
Материал: картинки с изображением предметов цилиндрической формы, цилиндры разного диаметра и высоты, карточки с «паспортом» цилиндра, модели цилиндров и кубик, цифры 1 – 5, набор геометрических фигур на каждого ребенка.
1. Знакомство с цилиндром и его свойствами.
Воспитатель показывает картинки предметов цилиндрической формы: стакан, колбасу, шляпу-цилиндр, банку цилиндрической формы, клеящий карандаш.
— Что общего у всех этих предметов вы заметили? (У всех предметов похожа форма.)
Если дети затрудняются ответить на этот вопрос, можно задать наводящие вопросы: одинаков ли материал, из которого сделаны эти предметы, их цвет, размер, назначение.
Затем воспитатель сообщает детям, что предметы такой формы называются цилиндрами, и просит их найти цилиндры на своем столе. Вместе с цилиндрами на столе должны быть предметы и других форм (например, шара, параллелепипеда, конуса). Целесообразно показать также картинки, на которых предметы цилиндрической формы являются элементами: пушка, здание с колоннами, дерево и т. д.
Далее дети знакомятся со свойствами цилиндра.
— Знаете ли вы, почему цилиндр так называется? Очень давно, когда никаких машин еще не было, люди передвигали тяжелые предметы при помощи стволов деревьев. Подумайте – как?
Воспитатель дает детям несколько цилиндров одинакового диаметра (например, карандаши) и кубик и предлагает представить, что кубик – это очень тяжелый груз, который надо переместить с одного конца стола на другой, используя цилиндры. После выполнения задачи воспитатель рассказывает, что слово «цилиндр» в переводе с греческого – «каток», «валик». Одним из его свойств является то, что его можно катить.
Детям предлагается разойтись по группе и найти предметы цилиндрической формы.
Затем дети возвращаются к столу, на котором стоят разные цилиндры. Им предлагается найти фигуры, одинаковые по какому-либо признаку, и у отобранных фигур найти признаки отличия. Например, это могут быть цилиндры, равные по высоте, но разные по толщине, цвету, материалу, из которого они сделаны (цилиндры можно сделать из бумаги, пластилина, взять пластмассовые, металлические цилиндры, деревянные карандаши и т. д.)
2. Физкультминутка: «Кто самый внимательный?»
По команде «Ухо» дети должны схватиться за ухо (можно усложнить, говоря «Правое ухо», по команде «Нос» — за нос. Воспитатель выполняет задание вместе с детьми. Через некоторое время начинает намеренно ошибаться и сбивать детей.
3. Игра: «Паспортный стол».
У детей на столах карточки от 1 до 5. Воспитатель предлагает им рассмотреть фигуры, сделанные из пластилина различных цветов.
Дети отвечают на вопросы воспитателя:
— Сколько всего фигур? (Показывают цифру.)
— Посчитайте от 1 до 5 и от 5 до 1.
— Сколько цилиндров? (Хлопают в ладоши.)
— Почему хлопнули 4 раза? (Вторая фигура – не цилиндр.)
— Чем вторая фигура отличается от остальных?
После всех рассуждений дети приходят к выводу, что у цилиндра с двух сторон одинаковые круги, а у второй фигуры – нет.
Воспитатель ставит цилиндр на стол и просит детей присесть так, чтобы фигура была на уровне глаз. Спрашивает детей о том. что они видят, как это можно зарисовать. Затем поворачивает цилиндр несколько раз и спрашивает детей о том же. В результате обсуждения приходят к выводу:
— Значит, если хотят рассказать о цилиндре, это делают так:
Это «паспорт» фигуры. О чем по нему можно узнать? (О высоте цилиндра, его толщине).
Воспитатель прикладывает цилиндр к прямоугольнику, а основания цилиндра – к кругам и показывает, как «паспорт» сопоставляется с его обладателем.
На столе у детей разные цилиндры. Каждому ребенку дается «паспорт», по которому он должен найти соответствующий этому «паспорту» цилиндр.
4. Игра: «Числовое лото».
Дети раскладывают на столе карточки с цифрами от 1 до 5 (лицом вниз). Карточки перемешиваются. Затем каждый ребенок должен вытащить наугад какую-нибудь карточку и выложить столько фигур «Геометрического лото», имеющих общий признак, сколько указывает цифра на карточке (например, 3 большие фигуры, или 4 красные фигуры, или 2 круга и т. д.).
После выполнения задания дети с воспитателем ходят по группе и проверяют правильность решения.
Требования к уровню подготовки воспитанников по дисциплине «Математика» во второй младшей группе. Количество и счёт: Счёт наизусть в пределах пяти, сравнивать группы предметов, содержащие до 5 предметов, сравнивать количество предметов,.
Видео:Объемные Геометрические ФИГУРЫ Загадки для ДЕТЕЙСкачать
Что такое цилиндр: определение, элементы, виды, варианты сечения
В данной публикации мы рассмотрим определение, основные элементы, виды и возможные варианты сечения одной из самых распространенных трехмерных геометрических фигур – цилиндра. Представленная информация сопровождается наглядными рисунками для лучшего восприятия.
Видео:Цилиндр, конус, шар, 6 классСкачать
Определение цилиндра
Далее мы подробно остановимся на прямом круговом цилиндре как самой популярной разновидности фигуры. Другие ее виды будут перечислены в последнем разделе данной публикации.
Прямой круговой цилиндр – это геометрическая фигура в пространстве, полученная путем вращения прямоугольника вокруг своей стороны или оси симметрии. Поэтому такой цилиндр иногда называют цилиндром вращения.
Цилиндр на рисунке выше получен в результате вращения прямоугольного треугольника ABCD вокруг оси O1O2 на 180° или прямоугольников ABO2O1/O1O2CD вокруг стороны O1O2 на 360°.
Видео:Видеоурок по математике "Цилиндр"Скачать
Основные элементы цилиндра
- Основания цилиндра – два одинаковых по размеру/площади круга с центрами в точках O1 и O2.
- R – радиус оснований цилиндра, отрезки AD и BC – диаметры (d).
- O1O2 – ось симметрии цилиндра, одновременно является его высотой (h).
- l (AB, CD) – образующие цилиндра и одновременно с этим стороны прямоугольника ABCD. Равны высоте фигуры.
Развёртка цилиндра – боковая (цилиндрическая) поверхность фигуры, развернутая в плоскость; является прямоугольником.
- длина данного прямоугольника равна длине окружности основания цилиндра ( 2πR );
- ширина равна высоте/образующей цилиндра.
Примечание: формулы для нахождения площади поверхности и объема цилиндра представлены в отдельных публикациях.
Читайте также: Цилиндр 2птс4 3 штоковый ремкомплект
Видео:11 класс. Геометрия. Объем цилиндраСкачать
Геометрия
Лучшие условия по продуктам Тинькофф по этой ссылке
Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера
. 500 руб. на счет при заказе сим-карты по этой ссылке
Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке
Видео:ТЕМА 2. ПОСТРОЕНИЕ КУБА, ЦИЛИНДРА, ШАРАСкачать
Понятие цилиндра
Построим на некоторой плоскости α окружность L, центр которой находится в точке О, а ее радиус обозначим как r. Далее через каждую точку этой окруж-ти проведем прямую, которая будет перпендикулярна к α. Все вместе эти прямые образуют поверхность, которую принято называть цилиндрической поверхностью (может использоваться сокращение поверх-ть). Введем несколько понятий:
- Окружность, построенная в плос-ти α, именуется основанием цилиндрической поверх-ти;
- Каждая прямая, проходящая через эту окруж-ть L и перпендикулярная α – это образующая цилиндрической поверх-ти;
- Прямая, проходящая через точку О и также перпендикулярная α, именуется осью цилиндрической поверх-ти.
Примечание. Заметьте, что в стереометрии при изображении окружности на плос-ти она выглядит как эллипс (овал).
Заметим, что так как все образующие и ось цилиндрической поверх-ти перпендикулярны одной и той же плос-ти α, то они будут параллельны друг другу.
Далее проведем плос-ть β, параллельную α. Так как образующие и ось пересекали α, то они должны пересекать и β. В результате они образуют в плос-ти β какую-то плоскую линию L1. Докажем, что L1 – это также окружность.
Действительно, пусть ось цилиндрической поверх-ти пересекает плос-ти α и β в точках О и О1 соответственно. Произвольная образующая пересекает эти же плос-ти в точках А и А1:
Так как ОО1||АА1, то ОО1А1А – это плоский четырехугольник. ОО1⊥α и ОО1⊥β, поэтому углы ∠АОО1 и ∠А1О1О – прямые. АА1⊥α и АА1⊥β, поэтому прямыми будут и углы ∠ОАА1 и ∠О1А1А. Получается, что ОО1А1А – это прямоугольник, и поэтому отрезки ОА и О1А1 одинаковы:
Итак, точка А1 находится на расстоянии r от О1. Аналогично и для любой другой точки на линии L1 можно показать, что она находится на расстоянии r от О1. То есть все точки L1 равноудалены от О1, и поэтому L1 – это окруж-ть с центром в точке О1, ч. т. д.
Обратите внимание, что окруж-ти L и L1 имеют одинаковые радиусы, то есть это одинаковые окруж-ти.
Объемная фигура, образованная окруж-тями L и L1, именуется цилиндром. Рассмотрим его основные элементы:
- круги L1 и L – это основания цилиндра;
- отрезок ОО1 – ось цилиндра;
- отрезки образующих, заключенные между основаниями, именуются образующими цилиндра;
- часть цилиндрической поверх-ти, заключенную между основаниями цилиндра, именуют боковой поверхностью цилиндра.
Напомним, что отрезки параллельных прямых, заключенные между параллельными плос-тями, имеют одинаковую длину. Отсюда вытекает тот факт, что образующие цилиндра одинаковы.
- длина образующей именуется высотой цилиндра;
- радиус оснований цилиндра именуется радиусом цилиндра.
Отметим, что на самом деле мы рассмотрели только частный случай цилиндра – так называемый прямой круговой цилиндр. Его основания – это круги (поэтому он именуется круговым), а его образующие образуют с основаниями прямой угол(поэтому он именуется прямым). Можно построить наклонный цилиндр (его также называют косым), у которого образующие не перпендикулярны основанию. Также существуют и цилиндры, у которых основаниями являются не окруж-ти, а другие фигуры, например параболы:
В принципе любую призму (а значит и любой параллелепипед) можно считать цилиндром. Однако в дальнейшем в курсе школьной стереометрии под цилиндром будет подразумеваться исключительно прямой круговой цилиндр, если специально не оговорено иное.
В реальной жизни очень многие предметы имеют форму цилиндра. Колонны в зданиях, ножки стульев, бочки, рулоны бумаги представляют собой цилиндры. Даже дерево можно условно считать цилиндром.
Рассмотрим сечение цилиндра плос-тью, перпендикулярной его основаниям.
Пусть сечение пересекает нижнее основание цилиндра в точках А1 и В1. Тогда перпендикуляры к основанию, проходящие через эти точки, будут принадлежать этому сечению. Но эти перпендикуляры – одновременно и образующие цилиндра А1А и В1В. Значит, сечение проходит и через точки А и В. Раз АА1 и ВВ1 – перпендикуляры к обоим основаниям цилиндра, то
Итак, в четырехугольнике АВВ1А1 все углы прямые, то есть он представляет собой прямоугольник. Более того, можно утверждать, что любое сечение, проходящее через образующую цилиндра, будет прямоугольником, ведь такое сечение будет перпендикулярно основаниям, так как оно содержит перпендикуляр к ним. Сечение, проходящее через цилиндрическую ось, именуется осевым сечением. Оно также имеет форму прямоугольника.
Далее рассмотрим сечение цилиндра плос-тью, параллельной основаниям:
Пусть секущей будет плос-ть γ, а нижнее основание располагается в плос-ти α. Тогда по определению фигура, «зажатая» между этими двумя плос-тями – это цилиндр, а потому сечение должно иметь форму круга. Получается, что сечение γ разбивает цилиндр на два цилиндра.
Рассмотрим боковую поверх-ть цилиндра. Она представляет собой замкнутую поверхность. Если ее условно «разрезать» по образующей цилиндра и развернуть, то получится прямоугольник:
Длина одной стороны такого прямоугольника (он называется разверткой боковой поверх-ти цилиндра) – это длина образующей цилиндра, то есть его высота. Длина второй стороны совпадает с длиной окруж-ти, лежащей в основании цилиндра. Если радиус цилиндра обозначен как r, то длина этой окруж-ти составляет 2πr. Тогда площадь боковой поверх-ти можно рассчитать как площадь прямоугольника:
Площадь полной поверх-ти цилиндра – это сумма площадей его оснований и его боковой поверх-ти. Так как площадь круга рассчитывается по формуле
Рассмотрим ещё несколько важных понятий. В цилиндр может быть вписана прямая призма. В таком случае основания призмы находятся в тех же плос-тях, что и основания цилиндра, а её боковые грани – это образующие цилиндра.
Если плос-ть содержит образующую цилиндра, но не пересекает его основания, то такая плос-ть именуется касательной к цилиндру. Можно сказать, что касательная плос-ть – это такая плос-ть, которая имеет ровно по одной общей точке с каждым основанием цилиндром.
Если каждая боковая грань призмы – это касательная к цилиндру, а основания призмы находятся в тех же плос-тях, что и основания цилиндра, то говорят, что цилиндр вписан в призму.
Читайте также: Что такое осевое сечение цилиндра конуса
Естественно, что если цилиндр вписан в призму, то его основания оказываются вписанными в те многоугольники, которые являются основаниями призмы. Если же призма вписана в цилиндр, то основания цилиндра – это уже окруж-ти, описанные около этих многоугольников.
Рассмотрим несколько задач, в которых фигурируют цилиндры.
Задание. Найдите боковую и полную площади цилиндра, если его радиус составляет 2 м, а высота – 3 м.
Задание. Какова длина диагонали осевого сечения цилиндра, с высотой 4 м и радиусом 1,5 м?
Решение. Осевое сечение цилиндра – это прямоугольник, обозначим его как АВСD. Сторона АВ – это высота цилиндра, а AD – это диаметр нижнего основания, ведь AD проходит через центр окруж-ти О. Тогда длина AD вдвое больше радиуса цилиндра:
Задание. Осевое сечение цилиндра – это квадрат, площадь которого обозначена буквой Q. Какова площадь основания цилиндра?
Решение. Обозначим сторону сечения-квадрата буквой а. Зная площадь сечения, легко найдем и сторону:
Задание. Высота цилиндра составляет 8 см, а его радиус – 5 см. Через его образующую проведено сечение, которое имеет форму квадрата. Каково расстояние между этим сечением и осью цилиндра?
Решение. Обозначим сечение как АВСD. Так как и это сечение, и ось цилиндра перпендикулярны основаниям цилиндра, то они должны быть параллельны друг другу. Расстояние между ними – это длина перпендикуляра О1К, опущенного из центра основания на сторону ВС:
Отрезок АВ имеет длину 8 см, ведь это высота цилиндра. Так как АВСD – квадрат, то и ВС имеет такую же длину. ВС – это хорда в окруж-ти с центром в точке О1. Напомним, что перпендикуляр к хорде, опущенный из центра окруж-ти, делит ее пополам, поэтому
Задание. Диаметр цилиндра равен его высоте. На верхнем основании, центр которого находится в точке О, отмечены точки А и В так, что ∠АОВ составляет 60°. Отрезок АА1 – образующая цилиндра. Найдите тангенс угла ∠ВА1А.
Решение. Рассмотрим ∆АОВ. Он равнобедренный, ведь радиусы АО и ОВ одинаковы. Но если в равнобедренном треугольнике один из углов составляет 60°, то и все углы будут также будут по 60°, то есть это равносторонний треугольник. Тогда, если радиус цилиндра обозначен как r, то
Видео:Ему удалили более 200 зубов #ShortsСкачать
Понятие конуса
Построим на плос-ти α окруж-ть L с центром в точке О. Далее через О проведем перпендикуляр к α и отметим на нем точку Р. Если мы отрезками соединим точку Р с каждой точкой окруж-ти L, то получим поверх-ть, которая именуется конической поверхностью. При этом:
- прямая ОР – это ось конической поверх-ти;
- прямые, соединяющие Р с точками на окруж-ти L, именуются образующими конической поверх-ти;
- сама точка Р – это вершина конической поверх-ти.
Объемное тело, ограниченное окруж-тью L и конической поверх-тью, именуется конусом. Соответственно вершина конической поверх-ти, её ось и образующие будут одновременно являться вершиной, осью и образующими конуса. Окруж-ть L – это основание конуса.
- коническая поверх-ть конуса именуется его боковой поверх-тью;
- если же к этой площади прибавить ещё и площадь основания, то в итоге получится полная площадь конуса;
- отрезок ОР – это не только ось конуса, но и высота конуса.
Как и в случае с цилиндром, мы в данном случае рассматриваем особый случай конуса – прямой круговой конус. В более общем случае ось конуса может не быть перпендикуляром к плос-ти основания (так называемый косой конус). Также в его основании может находиться не окруж-ть, а другая плоская фигура.
В общем случае любая пирамида может рассматриваться как частный случай конуса. Однако в рамках школьного курса под конусом подразумевается исключительно прямой круговой конус, если только не обговорено иное.
Докажем важное утверждение:
Действительно, рассмотрим две произвольные образующие РА и РВ у конуса с вершиной Р, у которой О – центр основания:
Так как ось ОР перпендикулярна основанию, то ∆РОА и ∆РОВ – прямоугольные. У них общий катет РО, а катеты АО и ОВ одинаковы как радиусы окруж-ти. Тогда ∆РОА и ∆РОВ равны, поэтому одинаковы и образующие РА и РВ, ч. т. д.
Заметим, что конус получается при вращении прямоугольного треуг-ка вокруг его катета. Так, на следующем рисунке конус получается при вращении ∆РОА с прямым углом О относительно катета РО:
Если сечение конуса проходит через его ось, то оно именуется осевым сечением. Ясно, что это сечение будет являться треуг-ком, причем две его стороны – это образующие конуса, а третья сторона диаметр основания. Образующие конуса одинаковы, поэтому осевое сечение будет равнобедренным треуг-ком.
Теперь рассмотрим сечение, параллельное плос-ти основания. Пусть оно пересекает ось РО в какой-то точке О1. Также пусть А1 – точка пересечения образующей АР исходного конуса с секущей плос-тью α:
Заметим, что раз ось РО перпендикулярна основанию, то она также будет перпендикулярна и секущей плос-ти, ведь основание и плос-ть α параллельны. Тогда ∠РО1А1 будет прямым.
Теперь рассмотрим ∠РОА и ∠РО1А1. Они прямоугольные и у них есть общие угол ∠АРО. Значит, это подобные треуг-ки. Обозначим радиус ОА как r, а длину А1О1 как r1. Тогда из подобия получаем:
Рассмотрим теперь другую образующую ВР, которая пересекает секущую плос-ть в точке В1. Отрезки АО и ОВ одинаковы. Повторяя предыдущие рассуждения, легко доказать подобие ∆РОВ и ∆РО1В1, откуда можно вычислить длину О1В1:
Получили, что точки А1и В1 находятся на одинаковом расстоянии r1 от точки О1. Мы выбрали точки А и В произвольно, поэтому для любых двух точек, принадлежащих сечению конуса, можно утверждать, что они равноудалены от точки О1. Это значит, что все точки сечения лежат на окруж-ти с центром в точке О1 и радиусом r1, то есть сечение имеет форму окруж-ти.
Как определить площадь боковой поверхности конуса? Для этого ее надо «разрезать» вдоль одной из образующих и развернуть на плос-ти. В результате получится круговой сектор.
Читайте также: Как снять гидравлический цилиндр со стула
Напомним, что площадь сектора может быть рассчитана по формуле
Теперь обозначим длину образующей буквой l, а радиус основания конуса как r. Тогда
Для вычисления полной площади конуса к боковой поверх-ти необходимо добавить ещё и площадь основания:
Видео:Учим геометрические фигурыСкачать
Усеченный конус
Ранее мы уже изучали сечение конуса плос-тью, параллельной его основанию. Такое сечение разбивает конус на две фигуры. Одна из них – это конус меньших размеров, а вторая именуется усеченным конусом:
Введем несколько понятий и отметим очевидные факты:
- боковая поверхность усеченного конуса – это коническая поверх-ть;
- у усеченного конуса есть два основания, имеющих форму окруж-ти;
- те отрезки образующих конической поверх-ти, которые заключены между основаниями усеченного конуса, именуются образующими усеченного конуса;
- отрезок, соединяющий центры оснований, именуется высотой усеченного конуса, или его осью.
В предыдущем параграфе мы уже выяснили, что радиусы оснований усеченного конуса связаны с высотами исходного конуса и того конуса, который получается при проведении секущей плос-ти:
Заметим, что любые две образующие усеченного конуса одинаковы. Действительно, пусть усеченный конус с образующими АА1 и ВВ1 получен их исходного конуса с образующими АР и ВР:
Заметим, что осевое сечение усеченного конуса – это равнобедренная трапеция:
Действительно, построим осевое сечение исходного конуса, которое пройдет через образующие РА и РВ. Пусть эти образующие пересекают плос-ть верхнего основания усеченного конуса в точках А1 и В1 соответственно. Тогда АА1В1В будет осевым сечением усеченного конуса. Точки А, А1, В1 и В располагаются в одной плос-ти РАВ, то есть АА1В1В – плоский четырехугольник. Его стороны АВ и А1В1 не могут пересекаться, ведь они принадлежат параллельным основаниям, поэтому АВ||А1В1. Стороны АА1 и ВВ1 одинаковы как образующие, при этом прямые АА1 и ВВ1 непараллельны, ведь они пересекаются в точке Р. В итоге получается, что АА1В1В – равнобедренная трапеция. Отдельно отметим, что ось ОО1 делит эту равнобедренную трапецию на две прямоугольных трапеции.
Теперь выведем формулы для рассчета площади боковой поверх-ти усеченного конуса. Ясно, что развертка усеченного конуса – это часть развертки поверх-ти исходного конуса:
Нам надо найти площадь фигуры АА1А1’А’ (показана желтым цветом). Ее можно найти как разность площадей секторов РАА’и РА1А1’. Но эти площади можно вычислить по формуле боковых поверх-тей конусов:
Обозначим длину образующей АА1 как l. Далее выразим А1P через r, r1 и l. ∆АОР и ∆РА1О1 подобны, поэтому можно записать:
Подставляем полученное выражение в (1) и получаем:
Чтобы посчитать полную площадь поверх-ти усеченного конуса, необходимо к боковой поверх-ти добавить площади верхнего и нижнего основания:
Рассмотрим несколько задач про конусы.
Задание. Высота конуса составляет 15 см, а его радиус – 8 см. Вычислите длину его образующей.
Решение. Обозначим вершину конуса буквой Р, буквой О – центр основания, а буквой А – произвольную точку на окруж-ти. Тогда высотой конуса будет отрезок ОР, радиусом – отрезок ОА, а образующей окажется отрезок АР:
Высота ОР перпендикулярна плос-ти основания, поэтому ∠РОА – прямой, а ∆РОА – прямоугольный. Тогда АР можно найти по теореме Пифагора:
Задание. Угол между образующей конуса и плос-тью основания составляет 30°, а длина образующей – 12 см. Какова площадь основания конуса?
Решение. Обозначим образующую как АР, а высоту конуса как ОР. Тогда радиус ОА будет проекцией АР на плос-ть основания, то именно ∠РАО будет составлять 30°:
Для вычисления площади основания надо найти радиус АО. Это можно сделать через прямоугольный ∆РОА:
Задание. Осевое сечение конуса имеет площадь 6, а площадь основания равна 8. Вычислите его высоту.
Решение. Пусть осевым сечением будет ∆РАВ, а РО – искомая высота:
Зная площадь основания, легко найдем радиус конуса ОА, а потом и диаметр АВ:
Так как РО – высота для ∆РАВ, то площадь этого треуг-ка может быть рассчитана так:
Задание. Найдите площадь боковой и полной поверх-ти конуса, если образующая имеет длину 8, а радиус основания составляет 5.
Решение. В этой задаче надо просто применить формулу для вычисления площадей:
Задание. Дан конус. Развертка его конической поверх-ти – это сектор, чья дуга составляет 60°. Р – вершина конуса, а РAB – осевое сечение. Вычислите ∠АРВ.
Решение. Длину образующих РА и РВ обозначим как L. Сначала находим длину дуги АА’:
Теперь искомый нами ∠АРВ можно найти с помощью теоремы косинусов, записанной для ∆АРВ:
Задание. Найдите длину образующей усеченного конуса, если радиусы его оснований составляют 6 см и 3 см, а его высота – 4 см.
Решение. Обозначим искомую образующую как АВ, а буквами О и О1 обозначим центры нижнего и верхнего оснований соответственно:
При изучении осевого сечения усеченного конуса мы уже выяснили, что АВО1О – прямоугольная трапеция. Опустим в ней высоту ВН, которая будет иметь ту же длину, что и высота конуса ОО1:
Задание. Радиусы оснований усеченного конуса обозначены буквами R и r (R > r). Образующая конуса образует с нижним основанием угол 45°. Составьте формулу, по которой можно найти площадь осевого сечения этого конуса.
Решение. Осевым сечением будет равнобедренная трапеция А1АВВ1:
Проведем высоту А1Н. Вычислим АН:
Теперь площадь трапеции А1АВВ1 можно посчитать по формуле:
Задание. Основания усеченного конуса – окружности с радиусами 6 и 7 см. Длина образующей – 5 см. Вычислите площадь его боковой и полной поверх-ти.
Решение. Здесь надо просто подставить данные из условия в формулы для вычисления площадей:
Ответ: 65π см 2 , 150π см 2 .
Сегодня мы узнали две новые объемные фигуры – цилиндр и конус. Эти фигуры иногда называют телами вращения, ведь они получаются вращением плоских фигур вокруг одной из их сторон. Важно помнить, что у всех тел вращения есть такие элементы, как основание (иногда не одно), ось и образующие.
💥 Видео
Сила цилиндра. Эксперимент №37Скачать
Геометрические тела.Скачать
5 класс "Цилиндр, конус, шар"Скачать
Объёмные геометрические фигуры. Куб. Цилиндр. Конус. Шар // Математика 1 классСкачать
Светотень 3. Почему люди не состоят из кубов и цилиндров, а предметы состоят. Как это использовать.Скачать
Лекция изучение формы предметов в рисункеСкачать
МЕРЗЛЯК-6. ЦИЛИНДР. КОНУС. ШАР. ПАРАГРАФ-26Скачать
Как нарисовать цилиндр, лежащий на горизонтальной плоскости. УрокСкачать
СЕКРЕТ ЦИЛИНДРА ( The Eternal Cylinder )Скачать
ВСЕ ИНСТРУМЕНТЫ в SubnauticaСкачать
Невероятно но это работает! Простой способ литья сложных изделий из алюминияСкачать
«ПОСТРОЕНИЕ геометрического тела ЦИЛИНДР».Скачать