Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Авто помощник

Если из каждой точки окружности опустить перпендикуляр на плоскость β , то основания этих перпендикуляров образуют на плоскости β окружность радиуса r , центр O1 которой является основанием перпендикуляра, опущенного из точки O на плоскость β (рис.2).

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Отрезок перпендикуляра, опущенного из любой точки окружности с центром O на плоскость β , который заключен между плоскостями α и β , называют образующей цилиндра .

Совокупность всех образующих цилиндра называют цилиндрической поверхностью .

Фигуру, ограниченную цилиндрической поверхностью и плоскостями α и β, называют цилиндром .

Отрезок OO1 называют осью цилиндра .

Радиус окружности Радиус окружности на плоскости α с центром в точке O называют радиусом цилиндра .

Круги с центрами O и O1 на плоскостях α и β , называют основаниями цилиндра .

Замечание 1. Цилиндрическую поверхность часто называют боковой поверхностью цилиндра . Боковая поверхность цилиндра и основания цилиндра вместе составляют полную поверхность цилиндра .

Замечание 2. Каждая образующая цилиндра параллельна оси цилиндра, а длина каждой образующей цилиндра равна высоте цилиндра.

Замечание 3. Прямая OO1 является осью симметрии цилиндра, а середина отрезка OO1 является центром симметрии цилиндра.

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Сечения цилиндра

Определение 2. Сечением цилиндра называют пересечение цилиндра с плоскостью.
Если сечение проходит через ось цилиндра, то такое сечение называют осевым сечением цилиндра (рис. 3).

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

На рисунке 3 изображено одно из осевых сечений цилиндра – прямоугольник AA1B1B .

Замечание 4. Каждое осевое сечение цилиндра с радиусом r и высотой h является прямоугольником со сторонами 2r и h .

Определение 3. Перпендикулярным сечением цилиндра называют сечение, перпендикулярное оси цилиндра (рис. 4).

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Замечание 5. Любым перпендикулярным сечением цилиндра будет круг радиуса r .

Замечание 6. Более подробно случаи взаимного расположения цилиндра и плоскости рассматриваются в разделе нашего справочника «Взаимное расположение цилиндра и плоскости в пространстве».

Видео:№522. Диагональ осевого сечения цилиндра равна 48 см. Угол между этой диагональю и образующейСкачать

№522. Диагональ осевого сечения цилиндра равна 48 см. Угол между этой диагональю и образующей

Объем цилиндра. Площадь боковой поверхности цилиндра.
Площадь полной поверхности цилиндра

Для цилиндра с радиусом r и высотой h (рис. 5)

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

введем следующие обозначения

Vобъем цилиндра
Sбокплощадь боковой поверхности цилиндра
Sполнплощадь полной поверхности цилиндра
Sоснплощадь основания цилиндра

Тогда справедливы следующие формулы для вычисления объема, площади боковой и полной поверхности цилиндра:

при помощи предельного перехода, когда число сторон правильной призмы n неограниченно возрастает. Однако доказательство этого факта выходит за рамки школьной программы.

Видео:№529. Высота цилиндра равна 8 см, радиус равен 5 см. Найдите площадь сечения цилиндраСкачать

№529. Высота цилиндра равна 8 см, радиус равен 5 см. Найдите площадь сечения цилиндра

Геометрические тела. Цилиндр.

Цилиндр − это геометрическое тело, которое ограничено цилиндрической поверхностью и 2-мя плоскостями, которые параллельны и пересекают ее.

ABCDEFG и abcdefg — это основания цилиндра. Расстояние между основаниями (KM)высота цилиндра.

Цилиндрические сечения боковой поверхности кругового цилиндра.

Сечения, которые идут параллельно к основанию, будут являться кругами одного радиуса. Сечения, которые параллельны образующим цилиндра — это пары параллельных прямых (AB || CD). Сечения, не параллельные ни основанию, ни образующим, являются эллипсами.

Цилиндрическая поверхность образуется посредством движения прямой параллельно самой себе. Точка прямой, которая выделена, перемещается вдоль заданной плоской кривой – направляющей. Эта прямая называется образующей цилиндрической поверхности.

Прямой цилиндр – это такой цилиндр, в котором образующие перпендикулярны основанию. Если образующие цилиндра не перпендикулярны основанию, то это будет наклонный цилиндр.

Круговой цилиндр – цилиндр, основанием которого является круг.

Круглый цилиндр – такой цилиндр, который одновременно и прямой, и круговой.

Прямой круговой цилиндр определяется радиусом основания R и образующей L, которая равна высоте цилиндра H.

Призма – это частный случай цилиндра.

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Видео:№535. Плоскость, параллельная оси цилиндра, отсекает от окружности основания дугу в 60Скачать

№535. Плоскость, параллельная оси цилиндра, отсекает от окружности основания дугу в 60

Формулы нахождения элементов цилиндра.

Площадь боковой поверхности прямого кругового цилиндра:

Площадь полной поверхности прямого кругового цилиндра:

Объем прямого кругового цилиндра:

Прямой круговой цилиндр со скошенным основанием либо кратко скошенный цилиндр определяют с помощью радиуса основания R, минимальной высоты h1 и максимальной высоты h2.

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Площадь боковой поверхности скошенного цилиндра:

Площадь оснований скошенного цилиндра:

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Площадь полной поверхности скошенного цилиндра:

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Объем скошенного цилиндра:

Sбок — площадь боковой поверхности;

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Опорный конспект по геометрии на тему «Цилиндр»

Ищем педагогов в команду «Инфоурок»

Опр. Цилиндром называется тело, которое состоит из двух кругов, совмещаемых

параллельным переносом и всех отрезков, соединяющих соответствующие точки

Круги называют основаниями цилиндра, а отрезки, соединяющие соответствующие точки окружностей этих кругов – образующими цилиндра (рис. 1)

Все сечения цилиндра плоскостями основанию цилиндра между собой равныВсе сечения цилиндра плоскостями основанию цилиндра между собой равныВсе сечения цилиндра плоскостями основанию цилиндра между собой равныВсе сечения цилиндра плоскостями основанию цилиндра между собой равны

1) Основания цилиндра равны и лежат в параллельных плоскостях.

2) Образующие цилиндра равны и параллельны.

Опр. Радиусом цилиндра называется радиус его основания.

Опр. Высотой цилиндра называется расстояние между плоскостями его оснований.

Опр. Сечение цилиндра плоскостью, проходящей через ось цилиндра, называется осевым сечением.

Осевое сечение цилиндра – прямоугольник со сторонами 2 R и l (в прямом цилиндре l = Н) рис. 2

Сечение цилиндра, параллельные его оси, являются прямоугольниками (рис. 3).

Сечение цилиндра плоскостью, параллельной основаниям – круг, равный основаниям (рис. 4)

Площадь поверхности цилиндра.

Боковая поверхность цилиндра составлена из образующих.

Полная поверхность цилиндра состоит из оснований и боковой поверхности.

S полн = 2 S осн + S бок; S осн = П R 2 ; S бок = 2 П R ∙Н S полн = 2П R ∙( R + Н)

№1. Радиус цилиндра равен 3см, а его высота- 5см. Найдите площадь осевого сечения и площадь пол-

№2. Диагональ осевого сечения цилиндра наклонена к плоскости основания под углом и равна 20 см. Найдите площадь боковой поверхности цилиндра.

№3. Радиус цилиндра равен 2см, а его высота- 3см. Найдите диагональ осевого сечения цилиндра.

№4. Диагональ осевого сечения цилиндра, равная , образует с плоскостью основания угол . Найдите площадь боковой поверхности цилиндра.

№5. Площадь боковой поверхности цилиндра равна 15. Найдите площадь осевого сечения.

№6. Найдите высоту цилиндра, если площадь его основания равна 1, а S бок = .

№7. Диагональ осевого сечения цилиндра имеет длину 8см и наклонена к плоскости основания под углом . Найдите полную поверхность цилиндра.

Цилиндрическая дымовая труба с диаметром 65см имеет высоту 18м. Сколько жести нужно для её изготовления, если на заклепку уходит 10% материала?

Видео:Сечение цилиндра плоскостьюСкачать

Сечение цилиндра плоскостью

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Если секущая плоскость пересекает ось цилиндра и не перпендикулярна ей, то в сечении может получиться эллипс (рис. 145) или его некоторая часть (рис. 146, 147). Это следует из того, что параллельной проекцией окружности на плоскость, не параллельную плоскости окружности, является эллипс. ( Вспомните : наклонив цилиндрический стеклянный сосуд с водой, вы видите на поверхности воды эллипс или его часть. )

Сечение цилиндра плоскостью, проходящей через ось, называется осевым сечением цилиндра. Так как поворот пространства вокруг прямой на угол 180 ° является осевой симметрией относительно оси вращения, то ось прямого кругового цилиндра является его осью симметрии. Значит, осевым сечением цилиндра вращения является прямоугольник, стороны которого равны диаметру основания и образующей цилиндра (рис. 148). При этом все осевые сечения цилиндра — равные между собой прямоугольники .

Цилиндр, осевое сечение которого — квадрат, называют равносторонним цилиндром (рис. 149).

Так как все образующие цилиндра равны и параллельны друг другу, то любое сечение цилиндра плоскостью, параллельной его оси, есть прямоугольник, высота которого равна образующей цилиндра (рис. 150).

б) Изображение цилиндра. Чтобы построить изображение цилиндра, достаточно построить: 1) прямоугольник AВB 1 A 1 и его ось OO 1 (рис. 151); 2) два равных эллипса, центрами которых являются точки O и O 1 и осями — отрезки АВ и A 1 В 1 . Выделив штрихами невидимые линии, получаем искомое изображение цилиндра.

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

в) Касательная плоскость к цилиндру.

Определение. Плоскость, проходящая через образующую цилиндра перпендикулярно плоскости осевого сечения, проведённой через эту образующую, называется касательной плоскостью к цилиндру (рис. 152).

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Говорят, что плоскость α касается цилиндра ( цилиндрической поверхности ) по образующей DD 1 , каждая точка образующей DD 1 является точкой касания плоскости α и данного цилиндра.

Через любую точку боковой поверхности цилиндра проходит только одна его образующая. Через эту образующую можно провести только одно осевое сечение и только одну плоскость, перпендикулярную плоскости этого осевого сечения. Следовательно, через каждую точку боковой поверхности цилиндра можно провести лишь одну плоскость, касательную к данному цилиндру в этой точке.

17.3. Развёртка и площадь поверхности цилиндра

Следует заметить, что развёртка поверхности вращения — понятие в определённой мере интуитивное. К тому же не для каждой поверхности тела вращения можно построить её развёртку. Иными словами, не каждую поверхность можно «развернуть» на плоскости. Например, не существует развёртки сферы (см. раздел «Дифференциальная геометрия» в конце этой книги).

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Развёртку цилиндра мы также введём на интуитивном уровне.

Пусть R — радиус основания, h — высота цилиндра.

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Полная поверхность цилиндра состоит из его боковой поверхности и двух оснований — равных кругов. Если эту поверхность «разрезать» по образующей DD 1 (рис. 153) и по окружностям оснований, затем боковую поверхность развернуть на плоскости, то получим развёртку полной поверхности цилиндра (рис. 154), состоящую из прямоугольника и двух равных кругов, касающихся противоположных сторон этого прямоугольника (рис. 155).

Попробуйте изготовить развёртку цилиндра и склеить из неё цилиндр.

За площадь боковой поверхности цилиндра принимается площадь её развёртки , т. е. площадь боковой поверхности цилиндра равна площади прямоугольника, у которого одна сторона равна длине окружности основания цилиндра, а другая сторона — высоте цилиндра:

Таким образом, доказана следующая теорема.

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Теорема 26. Площадь боковой поверхности цилиндра равна произведению длины окружности основания на высоту. ▼

Площадь круга радиуса R равна π R 2 , поэтому S осн = π R 2 . Тогда для нахождения площади полной поверхность цилиндра справедливо:

S полн = S бок + 2 S осн = 2 π Rh + 2 π R 2 = 2 π R ( R + h ) .

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Следствие. Пусть цилиндр образован вращением прямоугольника ABCD вокруг его высоты AD (рис. 156) . Тогда

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Если EF — серединный перпендикуляр к образующей BC, проведённый из точки F оси l цилиндра, то EF = CD. Учитывая, что ВС = AD, получаем: S бок = 2 π EF • AD, т. е. боковая поверхность цилиндра равна произведению высоты цилиндра на длину окружности, радиус которой равен длине серединного перпендикуляра его образующей, проведённого из точки оcu цилиндра.

Это следствие найдёт своё применение в п. 19.7.

17 . 4 . Призмы, вписанные в цилиндр и описанные около цилиндра

Нам предстоит решать задачи, в которых рассматриваются многогранники, вписанные в фигуры вращения и описанные около них.

Для правильного и наглядного изображения конфигураций из таких многогранников и фигур вращения необходимо верно изображать правильные многоугольники, вписанные в окружность (круг) или описанные около неё.

Определение. Призма называется вписанной в цилиндр, если основания призмы вписаны в основания цилиндра (рис. 157).

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Цилиндр в этом случае называют описанным около призмы.

Боковые рёбра призмы соединяют соответственные вершины её оснований, вписанных в основания цилиндра. Эти вершины лежат на окружностях оснований цилиндра. Образующие цилиндра соединяют соответственные точки окружностей его оснований и параллельны боковым рёбрам призмы. Следовательно, боковые рёбра вписанной в цилиндр призмы — образующие цилиндра.

Определение. Призма называется описанной около цилиндра, если основания призмы описаны около оснований цилиндра.

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Цилиндр при этом называют вписанным в призму (рис. 158).

Так как соответственные стороны оснований призмы параллельны друг другу и перпендикулярны радиусам оснований цилиндра, проведённым в точки касания, то плоскости боковых граней призмы являются касательными плоскостями к цилиндру: эти плоскости касаются поверхности цилиндра по образующим , соединяющим точки, в которых стороны оснований призмы касаются окружностей оснований цилиндра.

При изображении правильных призм, вписанных в цилиндр, следует руководствоваться алгоритмами построений изображений правильных многоугольников, вписанных в окружность.

Итак, для построения изображения правильной призмы, вписанной в цилиндр: 1) строим изображение цилиндра; 2) строим изображение правильного многоугольника, вписанного в верхнее основание цилиндра; 3) через вершины построенного вписанного многоугольника проводим образующие цилиндра; 4) в нижнем основании цилиндра последовательно соединяем концы этих образующих; 5) выделяем видимые и невидимые линии (отрезки) изображаемых фигур.

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

На рисунке 159 изображены вписанные в цилиндр: призма, в основании которой прямоугольный треугольник (рис. 159, а ); правильная четырёхугольная призма (рис. 159, б ); правильная треугольная призма (рис. 159, в ); правильная шестиугольная призма (рис. 159, г ).

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

 ЗАДАЧА (3.029). Диагональ осевого сечения равностороннего цилиндра равна a . Найти площади боковой и полной поверхностей правильной призмы, вписанной в этот цилиндр, если призма: а) треугольная; б) четырёхугольная; в) шестиугольная.

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Решени е. Рассмотрим случай а). Пусть в равносторонний цилиндр вписана правильная призма ABCA 1 B 1 C 1 (рис. 160); CDD 1 C 1 — осевое сечение; OO 1 = h — высота цилиндра; ОС = R — радиус основания цилиндра.

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Так как цилиндр — равносторонний, то CDD 1 C 1 — квадрат, значит, высота цилиндра равна диаметру его основания. Тогда в квадрате СDD 1 С 1 находим CD = = a = h.

Далее, △ АВС — правильный, вписанный в основание, радиус которого R = Все сечения цилиндра плоскостями основанию цилиндра между собой равны= Все сечения цилиндра плоскостями основанию цилиндра между собой равны. Значит, сторона АВ и высота СЕ этого треугольника равны: АВ = R Все сечения цилиндра плоскостями основанию цилиндра между собой равны= Все сечения цилиндра плоскостями основанию цилиндра между собой равны, СЕ = Все сечения цилиндра плоскостями основанию цилиндра между собой равныR = Все сечения цилиндра плоскостями основанию цилиндра между собой равныa. Откуда

S осн = Все сечения цилиндра плоскостями основанию цилиндра между собой равны= Все сечения цилиндра плоскостями основанию цилиндра между собой равны;
S бок = 3 S ABB 1 A 1 = 3 AB • BB 1 = 3 • Все сечения цилиндра плоскостями основанию цилиндра между собой равны• a = Все сечения цилиндра плоскостями основанию цилиндра между собой равны.

S полн = S бок + 2 S осн = Все сечения цилиндра плоскостями основанию цилиндра между собой равны+ 2 • Все сечения цилиндра плоскостями основанию цилиндра между собой равны= Все сечения цилиндра плоскостями основанию цилиндра между собой равны.

Ответ: a) Все сечения цилиндра плоскостями основанию цилиндра между собой равны; Все сечения цилиндра плоскостями основанию цилиндра между собой равны.

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

 ЗАДАЧА (3.032). В равносторонний цилиндр, высота которого равна a, вписана правильная призма. Найти расстояние и угол между диагональю боковой грани призмы и осью цилиндра, если призма: а) треугольная; б) четырёхугольная; в) шестиугольная.

Решени е. Рассмотрим случай б). Пусть ABCDA 1 B 1 C 1 D 1 — вписанная в цилиндр правильная призма (рис. 161). Найдём расстояние и угол между осью OO 1 цилиндра и скрещивающейся с ней (почему?) диагональю АB 1 боковой грани ABB 1 A 1 данной призмы.

Расстояние между скрещивающимися прямыми равно расстоянию между параллельными плоскостями, проведёнными через эти прямые.

Если точка Е — середина отрезка AD, то расстояние между скрещивающимися прямыми AB 1 и OO 1 равно расстоянию между плоскостью грани ABB 1 A 1 и параллельной ей (почему?) плоскостью сечения EFF 1 E 1 . Это расстояние равно длине отрезка ОK (где точка K — середина АВ ), так как OK ⟂ ( ABB 1 ) и ( ABB 1 ) || ( EFF 1 ) .

Поскольку данный цилиндр — равносторонний, то BDD 1 B 1 — квадрат со стороной BD = ВВ 1 = a. Тогда АВ = Все сечения цилиндра плоскостями основанию цилиндра между собой равны= Все сечения цилиндра плоскостями основанию цилиндра между собой равны. Значит, ОK = АЕ = Все сечения цилиндра плоскостями основанию цилиндра между собой равны= Все сечения цилиндра плоскостями основанию цилиндра между собой равны— искомое расстояние между прямыми ОО 1 и АВ 1 .

Обозначим ∠ ( OO 1 ; AB 1 ) = ϕ , M = AB 1 ∩ A 1 B. Для нахождения угла ϕ проведём в грани ABB 1 A 1 прямую KK 1 || OO 1 . Тогда ϕ = ∠ ( OO 1 ; AB 1 ) = ∠ ( KK 1 ; AB 1 ) . Так как KK 1 || OO 1 , OO 1 ⟂ ( ABC ) , то MK ⟂ AB. Поэтому △ АKМ — прямоугольный. В этом треугольнике АK = Все сечения цилиндра плоскостями основанию цилиндра между собой равны, KМ = Все сечения цилиндра плоскостями основанию цилиндра между собой равны. Значит, tg ϕ = Все сечения цилиндра плоскостями основанию цилиндра между собой равны= Все сечения цилиндра плоскостями основанию цилиндра между собой равны, откуда ϕ = arctg Все сечения цилиндра плоскостями основанию цилиндра между собой равны.

Ответ: б) Все сечения цилиндра плоскостями основанию цилиндра между собой равны, arctg Все сечения цилиндра плоскостями основанию цилиндра между собой равны.

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Во многих пособиях по геометрии за площадь боковой поверхности цилиндра принимают предел последовательности площадей боковых поверхностей правильных вписанных в цилиндр (или описанных около цилиндра) n- угольных призм при n → + ∞ .

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Действительно, S бок. пов. призм = h • P осн. призм , где Р осн. призм — периметр основания призмы, h — длина её высоты. Для правильных вписанных в цилиндр призм h — постоянная величина, равная длине высоты цилиндра, а предел последовательности периметров правильных многоугольников, вписанных в окружность (основание цилиндра), равен длине этой окружности. Таким образом, мы вновь получаем: S бок = 2 π Rh.

Напомним принятое нами соглашение, основанное на принципе Кавальери.

«Пусть даны два тела и плоскость. Если каждая плоскость, параллельная данной плоскости и пересекающая одно из данных тел, пересекает также и другое, причём площади сечений, образованных при пересечении обоих тел, относятся как m : n, то и объёмы этих тел относятся как m : n ».

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Расположим цилиндр, имеющий высоту h и радиус основания R, и прямоугольный параллелепипед с рёбрами h, R, R так, чтобы их основания находились на двух параллельных плоскостях, расстояние между которыми равно h (рис. 162). Каждая плоскость, параллельная данным плоскостям и пересекающая цилиндр, пересекает также прямоугольный параллелепипед, причём площади образованных при пересечении обоих тел сечений относятся как π • R 2 : R 2 = π : 1. Тогда и для объёмов этих тел справедливо: V цил : V парал = π : 1 или V цил : ( R 2 • h ) = π : 1, откуда

Если цилиндр высотой h пересечь плоскостью, параллельной его оси, то этот цилиндр разобьётся на два тела (рис. 163). Объёмы этих тел относятся как площади сегментов, образовавшихся в основании цилиндра (докажите это на основании принципа Кавальери). Следовательно, объём каждого из этих тел может быть вычислен по формуле

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

Любая плоскость, проведённая через середину оси цилиндра, разбивает этот цилиндр на два равновеликих тела (рис. 164), объём V каждого из которых равен половине объёма данного цилиндра, т. е. V = π • R 2 • h.

Попробуйте, исходя из этой формулы, доказать, что в таком случае объём каждой части цилиндра (см. рис. 164) может быть вычислен по формуле:

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

V= π • R 2 • ( a + b ),

Все сечения цилиндра плоскостями основанию цилиндра между собой равны

где a и b — длины отрезков, на которые образующая цилиндра делится секущей плоскостью.

🌟 Видео

№525. Площадь осевого сечения цилиндра равна 10 м2, а площадь основания — 5 м2.Скачать

№525. Площадь осевого сечения цилиндра равна 10 м2, а площадь основания — 5 м2.

ЕГЭ Задание 14 Сечение цилиндраСкачать

ЕГЭ Задание 14 Сечение цилиндра

9 класс, 41 урок, ЦилиндрСкачать

9 класс, 41 урок, Цилиндр

№526. Площадь основания цилиндра относится к площади осевого сечения как √3π:4. Найдите:Скачать

№526. Площадь основания цилиндра относится к площади осевого сечения как √3π:4. Найдите:

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДРСкачать

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДР

Watch Геометрия 10-11 Классы. 26. Цилиндр. Свойства Цилиндра. Сечения Цилиндра ПлоскостямиСкачать

Watch Геометрия 10-11 Классы. 26. Цилиндр. Свойства Цилиндра. Сечения Цилиндра Плоскостями

№531. Высота цилиндра равна 10 дм. Площадь сечения цилиндра плоскостью, параллельнойСкачать

№531. Высота цилиндра равна 10 дм. Площадь сечения цилиндра плоскостью, параллельной

РТ_ПБ_61.1) Построить проекции линии пересечения цилиндра плоскостью частного положения.Скачать

РТ_ПБ_61.1) Построить проекции линии пересечения цилиндра плоскостью частного положения.

11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)Скачать

Геометрия 11 класс (Урок№6 - Тела вращения. Цилиндр.)

11 класс, 27 урок, Сечения цилиндрической поверхностиСкачать

11 класс, 27 урок, Сечения цилиндрической поверхности

№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длинеСкачать

№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длине

№542. Угол между образующей цилиндра и диагональю осевого сечения равен φ, площадь основанияСкачать

№542. Угол между образующей цилиндра и диагональю осевого сечения равен φ, площадь основания

№527. Концы отрезка АВ лежат на окружностях оснований цилиндра. Радиус цилиндра равен г,Скачать

№527. Концы отрезка АВ лежат на окружностях оснований цилиндра. Радиус цилиндра равен г,
Поделиться или сохранить к себе:
Технарь знаток