Вычисление объема цилиндра высота площадь основания

Вычисление объема цилиндра высота площадь основания

Авто помощник

Найти чему равен объем цилиндра (V) можно зная (либо-либо):

  • радиус r и высоту h цилиндра
  • диаметр d и высоту h цилиндра
  • площадь основания So и высоту h цилиндра
  • площадь боковой поверхности Sb и высоту h цилиндра

Подставьте значения в соответствующие поля и получите результат.

Содержание
  1. Зная радиус r и высоту h
  2. Формула
  3. Пример
  4. Зная диаметр d и высоту h
  5. Формула
  6. Пример
  7. Зная площадь основания So и высоту h
  8. Формула
  9. Пример
  10. Зная площадь боковой поверхности Sb и высоту h
  11. Формула
  12. Пример
  13. Объем цилиндра
  14. Объем правильного цилиндра через радиус и высоту цилиндра
  15. Формулы и калькулятор для вычисления объема цилиндра через площадь основания и высоту цилиндра
  16. Формулы и калькулятор для вычисления объема цилиндра через диаметр основания
  17. Объем цилиндрической полости
  18. Поверхности цилиндра
  19. Сечения цилиндра
  20. Что такое объем
  21. Нахождение объема цилиндра: формула и задачи
  22. Формула вычисления объема цилиндра
  23. Через площадь основания и высоту
  24. Через радиус основания и высоту
  25. Через диаметр основания и высоту
  26. Примеры задач
  27. Объем цилиндра
  28. Смотрите также
  29. Геометрические тела. Цилиндр.
  30. Формулы нахождения элементов цилиндра.
  31. Расчет объема цилиндра
  32. Калькуляторы объема цилиндра
  33. Формулы для вычисления объема цилиндра
  34. Примеры решений:
  35. 🎥 Видео

Зная радиус r и высоту h

Чему равен объем цилиндра V если известны его радиус r и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 8 см, а его радиус r = 2 см, то:

V = 3.14156 ⋅ 2 2 ⋅ 8 = 3.14156 ⋅ 32 = 100.53 см 3

Зная диаметр d и высоту h

Чему равен объем цилиндра V если известны его диаметр d и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 5 см, а его диаметр d = 1 см, то:

V = 3.14156 ⋅ ( 1 /2) 2 ⋅ 5 = 3.14156 ⋅ 1.25 ≈ 3.927 см 3

Зная площадь основания So и высоту h

Чему равен объем цилиндра V если известны его площадь основания So и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 10 см, а площадь его основания So = 5 см 2 , то:

Зная площадь боковой поверхности Sb и высоту h

Чему равен объем цилиндра V если известны его площадь боковой поверхности Sb и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 5 см, а площадь его боковой поверхности Sb = 30 см 2 , то:

V = 30 2 / 4 ⋅ 3.14⋅ 5 = 900 /62.8 = 14.33 см 3

Видео:ЕГЭ-2020: Изменение объёма цилиндраСкачать

ЕГЭ-2020: Изменение объёма цилиндра

Объем цилиндра

Объем цилиндра, формулы и калькулятор для вычисления объема цилиндра и площади его поверхностей, а также необходимая теория о характеристиках цилиндра.

Видео:Цилиндр - расчёт площади, объёма.Скачать

Цилиндр - расчёт площади, объёма.

Объем правильного цилиндра через радиус и высоту цилиндра

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Формулы и калькулятор для вычисления объема цилиндра через площадь основания и высоту цилиндра

Вычисление объема цилиндра высота площадь основания

Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Формулы и калькулятор для вычисления объема цилиндра через диаметр основания

Вычисление объема цилиндра высота площадь основания

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Объем цилиндрической полости

Вычисление объема цилиндра высота площадь основания

Объем полости в виде цилиндра равен объему цилиндра, который извлечен из данной полости для ее образования. То есть для вычисления цилиндрической полости можно воспользоваться формулами и калькулятором для расчета простого правильного цилиндра в зависимости от известных исходных данных.

На картинке продемонстрирована цилиндрическая полость, образованная в теле путем извлечения из него цилиндра. Объем извлеченного цилиндра и объем образованной полости равны.

Нужно отметить один важный момент. Несмотря на равенство объемов извлеченного цилиндра и образованной полости, площади поверхностей данных объектов будут отличаться, так как у образованной цилиндрической полости отсутствует верхняя поверхность. То есть суммарная площадь поверхности образованной цилиндрической полости будет меньше суммарной площади извлеченного цилиндра на одну площадь основания цилиндра.

Читайте также: Защелка магнитная trodos cx8550et под цилиндр pb золото

Правильный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра равен 90 градусов.

Неправильный или наклонный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра отличается от 90 градусов.

Рассмотрим правильный цилиндр.

Цилиндр – это тело, образованное вращением прямоугольника вокруг одной из его сторон. Тело цилиндра ограничено двумя кругами, называемыми основанием цилиндра и боковой цилиндрической поверхностью, которая в развертке представляет собой прямоугольник

Цилиндр можно так же описать как тело, состоящее из двух равных кругов, не лежащих в одной плоскости и параллельных между собой, и отрезков, соединяющих все точки одной окружности, с соответствующими точками другой окружности. Данные отрезки называются образующими цилиндра.

Радиус основания цилиндра, является радиусом цилиндра.

Ось цилиндра – это прямая, соединяющая центра оснований цилиндра.

Высота цилиндра – это перпендикуляр, опущенный от одного основания цилиндра к другому.

Видео:ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРАСкачать

ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРА

Поверхности цилиндра

Вычисление объема цилиндра высота площадь основания

Наружную поверхность цилиндра можно условно разделить на три отдельные поверхности: верхняя, нижняя и боковая.

Верхняя и нижняя поверхности цилиндра имеют форму круга и равны между собой.

Боковая поверхность цилиндра имеет форму прямоугольника. Чтобы это наглядно представить, возьмем боковую наружную поверхность цилиндра и мысленно сделаем вертикальный разрез по образующей цилиндра. Далее развернем поверхность на плоскость. В результате увидим, что боковая поверхность имеет форму прямоугольника (см. на картинке).

Видео:№525. Площадь осевого сечения цилиндра равна 10 м2, а площадь основания — 5 м2.Скачать

№525. Площадь осевого сечения цилиндра равна 10 м2, а площадь основания — 5 м2.

Сечения цилиндра

Вычисление объема цилиндра высота площадь основания

Вычисление объема цилиндра высота площадь основания

При сечении цилиндра плоскостью, проходящей через оба основания цилиндра под углом в 90 градусов, всегда получатся прямоугольная фигура .

Вычисление объема цилиндра высота площадь основания

При сечении цилиндра плоскостью, проходящей через оба основания цилиндра под углом отличным от 90 градусов, получатся фигура, похожая на прямоугольник , но две боковые стороны которого будут являться кривыми линиями.

Вычисление объема цилиндра высота площадь основания

Если секущая поверхность проходит параллельно основаниям цилиндра, то сечением будет круг .

Вычисление объема цилиндра высота площадь основания

Если секущая поверхность проходит через боковую поверхность, но при этом не параллельна основанию цилиндра, то в сечении получается эллипс .

Вычисление объема цилиндра высота площадь основания

Если секущая поверхность проходит через одно основание цилиндра и боковую поверхность, то в сечение будет фигура в виде половины эллипса .

Видео:Егэ.11кл. Объём первого цилиндра равен 12 м³, у второго цилиндра высота в 3 раза больше,а основаниеСкачать

Егэ.11кл. Объём первого цилиндра равен 12 м³, у второго цилиндра высота в 3 раза больше,а основание

Что такое объем

Объем тела (геометрической фигуры) – это количественная характеристика, характеризующая количество пространства, занимаемого телом. Объем выражается в кубических единицах измерения, например: мм 3 , см 3 , мл 3 .

Формула вычисления объема цилиндра часто применяются при расчете массы различных цилиндров, например, прутков, заготовок и т.п. Для вычисления массы, необходимо вычисленный объем цилиндра умножить на плотность материала из которого цилиндр.

Так же, вычислить объём цилиндра иногда требуется для определения полости в виде цилиндра (цилиндрическая полость). В данном случае объём полости будет равен объёму цилиндра, который полностью занимает эту полость.

Объем и площадь других видов цилиндров рассмотрен в статьях:

Видео:Объем цилиндраСкачать

Объем цилиндра

Нахождение объема цилиндра: формула и задачи

В данной публикации мы рассмотрим, как можно найти объем цилиндра и разберем примеры решения задач.

Видео:Задача на вычисление высоты цилиндраСкачать

Задача на вычисление высоты цилиндра

Формула вычисления объема цилиндра

Через площадь основания и высоту

Объем (V) цилиндра равняется произведению его высоты и площади основания.

Читайте также: Цилиндр тормозной рабочий урал однополостный

Вычисление объема цилиндра высота площадь основания

Через радиус основания и высоту

Как мы знаем, в качестве оснований цилиндра (равны между собой) выступает круг, площадь которого вычисляется так: S = π ⋅ R 2 . Следовательно, формулу для вычисления объема цилиндра можно представить в виде:

V = π ⋅ R 2 ⋅ H

Примечание: в расчетах значение числа π округляется до 3,14.

Через диаметр основания и высоту

Как нам известно, диаметр круга равняется двум его радиусам: d = 2R. А значит, вычислить объем цилиндра можно следующим образом:

Видео:11 класс, 32 урок, Объем цилиндраСкачать

11 класс, 32 урок, Объем цилиндра

Примеры задач

Задание 1
Найдите объем цилиндра, если дана площадь его основания – 78,5 см 2 , а также, высота – 10 см.

Решение:
Применим первую формулу, подставив в нее известные значения:
V = 78,5 см 2 ⋅ 10 см = 785 см 3 .

Задание 2
Высота цилиндра равна 6 см, а его диаметр – 8 см. Найдите объем фигуры.

Решение:
Воспользовавшись третьей формулой, в которой участвует диаметр, получаем:
V = 3,14 ⋅ (8/2 см) 2 ⋅ 6 см = 301,44 см 3 .

Видео:Сколько в бочке литров? Посчитаем.Скачать

Сколько в бочке литров? Посчитаем.

Объем цилиндра

Вычисление объема цилиндра высота площадь основания

Цилиндр – это геометрическое тело, которое имеет цилиндрическую поверхность, называемое еще как боковая поверхность цилиндра и имеет две поверхности, которые носят название оснований цилиндра. Круговым цилиндр называют, если у него в основании лежит круг.
Если вам необходимо вычислить объем цилиндра, то прежде, чем начать его вычисление отставьте прочь калькуляторы и свои методы решения. Ведь теперь у вас есть более легкий способ решить такую задачу, а именно наш онлайн калькулятор, который сэкономит ваше время и лишит возможности ошибиться. Все что от вас требуется это ввести несколько значений. Причем мы предлагаем два способа решения с любым из неизвестных.
Первый способ наш онлайн калькулятор вычисляет по формуле: , а второй по формуле
Где S – это площадь основания, h – это высота цилиндра, число пи равное 3.14159, а r— это радиус цилиндра.

Смотрите также

Спасибо, очень полезным оказался

Спасибо, очень удобный калькулятор. Вспомнила формулу вычисления объёма. Невозможно держать в голове всю школьную программу. Пользуешься только необходимыми вычислениями, которые нужны для моей профессии.

А в каких единицах измерения, в бананах или коровах? Услугами данного калькулятора пользуются не профессора! Бесполезно потраченное время!

Оксана, результат у тебя, и таких как ты, получится в кубических курах. Потому, что у вас мозги куриные!

В школу ходить надо было.
Если измерение проводится в см, то и получаете см возведённые в куб.

Учитель не до конца вам объяснил или вы не усвоили, что в геометрии как правило объем измеряется в кубах, соответственно:

— Если вводите в бананах, то результат будет в бананах кубических,
— Если в сантиметрах, то результат будет в сантиметрах кубических (см³).
и т.д.

Слушайте учителей, образовывайтесь, заставляйте свой мозг работать.

Не нужно быть профессором чтобы воспользоваться этим калькулятором
Разницы нету метры, сантимеры, миллиметры он вам выдаёт куб того что вы ввели.

Видео:Вычисление объёма цилиндраСкачать

Вычисление объёма цилиндра

Геометрические тела. Цилиндр.

Цилиндр − это геометрическое тело, которое ограничено цилиндрической поверхностью и 2-мя плоскостями, которые параллельны и пересекают ее.

ABCDEFG и abcdefg — это основания цилиндра. Расстояние между основаниями (KM)высота цилиндра.

Цилиндрические сечения боковой поверхности кругового цилиндра.

Сечения, которые идут параллельно к основанию, будут являться кругами одного радиуса. Сечения, которые параллельны образующим цилиндра — это пары параллельных прямых (AB || CD). Сечения, не параллельные ни основанию, ни образующим, являются эллипсами.

Цилиндрическая поверхность образуется посредством движения прямой параллельно самой себе. Точка прямой, которая выделена, перемещается вдоль заданной плоской кривой – направляющей. Эта прямая называется образующей цилиндрической поверхности.

Прямой цилиндр – это такой цилиндр, в котором образующие перпендикулярны основанию. Если образующие цилиндра не перпендикулярны основанию, то это будет наклонный цилиндр.

Круговой цилиндр – цилиндр, основанием которого является круг.

Круглый цилиндр – такой цилиндр, который одновременно и прямой, и круговой.

Прямой круговой цилиндр определяется радиусом основания R и образующей L, которая равна высоте цилиндра H.

Призма – это частный случай цилиндра.

Вычисление объема цилиндра высота площадь основания

Видео:Объем цилиндра. Практическая часть. 11 класс.Скачать

Объем цилиндра. Практическая часть. 11 класс.

Формулы нахождения элементов цилиндра.

Площадь боковой поверхности прямого кругового цилиндра:

Площадь полной поверхности прямого кругового цилиндра:

Объем прямого кругового цилиндра:

Прямой круговой цилиндр со скошенным основанием либо кратко скошенный цилиндр определяют с помощью радиуса основания R, минимальной высоты h1 и максимальной высоты h2.

Вычисление объема цилиндра высота площадь основания

Площадь боковой поверхности скошенного цилиндра:

Площадь оснований скошенного цилиндра:

Вычисление объема цилиндра высота площадь основания

Площадь полной поверхности скошенного цилиндра:

Вычисление объема цилиндра высота площадь основания

Объем скошенного цилиндра:

Sбок — площадь боковой поверхности;

Видео:11 класс. Геометрия. Объем цилиндраСкачать

11 класс. Геометрия. Объем цилиндра

Расчет объема цилиндра

Что бы узнать объем цилиндра вам нужно знать высоту, радиус или площадь, всего есть две основные формулы — площадь основания и высота и радиус и высота.

Самый простой способ это умножить площадь основания цилиндра на его высоту.

Видео:Объём цилиндраСкачать

Объём цилиндра

Калькуляторы объема цилиндра

  1. Выберете величины для вычисления — обязательно нужно знать высоту, площадь основания или диаметр цилиндра.
  2. Для результата введите известные значения величин.
  3. Выберете нужный показатель результата и вводные в куб. мм, куб. см, куб. м, куб. дюйм.
  4. Активируйте калькулятор и получите результат (значение не округляются).

Если после использования данного онлайн калькулятора (Расчет объема цилиндра) у вас возникли какие-то вопросы по работе сервиса или вопросы образовательного характера, то Вы всегда можете задать их на нашем форуме.

Цилиндр — геометрическое тело, ограниченное цилиндрической поверхностью (называемой боковой поверхностью цилиндра) и не более чем двумя поверхностями (основаниями цилиндра). Цилиндр — круговой если в основании его лежит круг.

Видео:Объем цилиндра.Скачать

Объем цилиндра.

Формулы для вычисления объема цилиндра

Формула объема цилиндра через радиус и высоту:

Видео:Стереометрия. ЕГЭ. Дано два цилиндра. Найдите объём второго цилиндраСкачать

Стереометрия. ЕГЭ. Дано два цилиндра. Найдите объём второго цилиндра

Примеры решений:

Определить, чему равен объем цилиндра, если радиус его основания R равна $225 \pi \mathrm ^ $ , высота равна h в 5 раз болше R.

Вычисляем радиус основания:

Выразим радиус R:

Вычисляем высоту:

Вычисляем объем цилиндра по формуле:

$V=S_ > \cdot h=225 \cdot \pi \cdot 75 \approx 52950 \mathrm > \cdot h=\pi \cdot R^ \cdot h=\pi \cdot 17^ \cdot 140 \approx 127108 \mathrm Источник

🎥 Видео

Объем и площадь поверхности цилиндра (видео 44) | Подобие. Геометрия | МатематикаСкачать

Объем и площадь поверхности цилиндра (видео 44) | Подобие. Геометрия | Математика

Объем цилиндра и площадь его поверхности.Скачать

Объем цилиндра и площадь его поверхности.
Поделиться или сохранить к себе:
Технарь знаток