Видео:Урок 224. Напряженность поля неточечных зарядовСкачать
Вычислить напряженность в точках удаленных от оси цилиндров
поверхностная плотность равномерно распределенного заряда
На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского – Гаусса: найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = –2σ, σ2 = σ; 2) вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять σ = 50 нКл/м 2 , r = 1,5R; 3) построить график E(r).
На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского—Гаусса: найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = σ, σ2 = –σ; 2) вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять σ = 60 нКл/м 2 , r = 3R; 3) построить график E(r).
На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского – Гаусса: найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = –σ, σ2 = 4σ; 2) вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять σ = 30 нКл/м 2 , r = 4R; 3) построить график E(r).
На бесконечном тонкостенном цилиндре диаметром d = 10 см равномерно распределен заряд с поверхностной плотностью Q = 1 мкКл/м 2 . Определить напряженность поля в точке, отстоящей от поверхности цилиндра на а = 5 см.
На бесконечном тонкостенном цилиндре диаметром d = 20 см равномерно распределен заряд с поверхностной плотностью σ = 4 мкКл/м 2 . Определить напряженность поля в точке, отстоящей от поверхности цилиндра на а = 15 см.
Бесконечная плоскость несет заряд, равномерно распределенный с поверхностной плотностью σ = 1 мкКл/м 2 . На некотором расстоянии от плоскости параллельно ей расположен круг радиусом r = 10 см. Вычислить поток ФE вектора напряженности через этот круг.
На пластинах плоского конденсатора равномерно распределен заряд с поверхностной плотностью σ = 0,2 мкКл/м 2 . Расстояние d между пластинами равно 1 мм. На сколько изменится разность потенциалов на его обкладках при увеличении расстояния d между пластинами до 3 мм?
Два коаксиальных цилиндра несут на себе равномерно распределенный заряд с поверхностными плотностями σ1 и σ2. Используя теорему Гаусса определить напряженность электрического поля в зависимости от расстояния до оси r. Принять σ1 = σ, σ2 = -σ, где σ = 10 нКл/м 2 . Радиусы цилиндров R1 = R и R2 = 2R, где R = 10 см. Построить график зависимости напряженности Е(r).
На бесконечном толстостенном цилиндре диаметром 10 см равномерно распределен заряд с поверхностной плотностью 10 мкКл/м 2 . Определить (в кВ/см) напряженность поля в точке, отстоящей от поверхности цилиндра на расстоянии 5 см.
Сферическая поверхность радиусом R = 0,1 м несет равномерно распределенный по ней заряд с поверхностной плотностью σ = 2·10 –7 Кл/м 2 . Вне сферы на расстоянии R от ее поверхности находится точечный заряд q = 4·10 –8 Кл (см. рис. 14.2.). Найти напряженность и потенциал электрического поля в центре сферы.
На рисунке 14.2 изображена отрицательно заряженная тонкостенная сфера радиусом R = 20 см, имеющая равномерно распределенный заряд с поверхностной плотностью σ = –0,2 мкКл/м 2 , и точечный заряд q = 100 нКл, находящийся на расстоянии R от поверхности сферы. Рассчитать напряженность и потенциал электрического поля в точках В и С, которые находятся в непосредственной близости от стенки сферы соответственно внутри и вне сферы, как показано на рис. 14.2.
На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2 (см. рис.). Требуется: 1) используя теорему Остроградского-Гаусса, найти зависимость E(r) напряженности электрического поля от расстояния для трех областей: I, II, III. Принять σ1 = 3σ, σ2 = σ, 2) вычислить напряженность E в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять σ = 10 нКл/м 2 ; r = 2R; 3) построить график E(r).
Два коаксиальных цилиндра несут на себе равномерно распределенный заряд с поверхностными плотностями σ1 и σ2. Используя теорему Гаусса, определить напряженность электрического поля в зависимости от расстояния до оси r. Принять σ1 = –σ, σ2 = –2σ, где σ = 10 нКл/м 2 . Радиусы сфер R1 = R и R2 = 5R, где R = 10 см. Построить график зависимости напряженности E(r).
На двух концентрических сферах равномерно распределенный заряд с поверхностными плотностями σ1 = 3σ и σ2 = –σ, где σ = 10 нКл/м 2 . Радиусы сфер R и 2R, где R = 10 см. Определить напряженность электрического поля в зависимости от расстояния до оси r. Найти зависимость E(r), вычислить E(R1), E(R2), если R1 = 1,5R, R2 = 3R. Построить график зависимости напряженности Е(r).
Два коаксиальных цилиндра несут на себе равномерно распределенный заряд с поверхностными плотностями σ1 = 3σ и σ2 = –σ, где σ = 10 нКл/м 2 . Определить напряженность электрического поля в зависимости от расстояния до оси r. Радиусы цилиндров R и 2R, где R = 10 см. Найти зависимость E(r), вычислить E(R1), E(R2), если R1 = 1,5R, R2 = 3R. Построить график зависимости напряженности Е(r).
На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 = –120 нКл/м 2 и σ2 = 60 нКл/м 2 . Используя теорему Гаусса, найти зависимость Е(r) напряженности электрического поля от координаты для трех областей: I, II и III. Вычислить напряженность Е электрического поля в точке, удаленной от оси цилиндров на расстояние r = 1,5R. Построить график зависимости Е(r).
На бесконечно длинном тонкостенном цилиндре диаметром D = 20 см равномерно распределен заряд с поверхностной плотностью σ = 4·10 –6 Кл/м 2 . Определить напряженность электрического поля в точке, отстоящей от оси цилиндра на расстоянии S = 40 см.
На бесконечном тонкостенном цилиндре диаметром d = 10 см равномерно распределен заряд с поверхностной плотностью σ = 2 мкКл/м 2 . Определить напряженность поля в точке, отстоящей от поверхности цилиндра на расстоянии 12 см.
На бесконечном тонкостенном цилиндре диаметром d = 10 см равномерно распределен заряд с поверхностной плотностью σ = 1 мкКл/м 2 . Определить напряженность поля в точке, отстоящей от поверхности цилиндра на a = 5 см.
Полусфера несет заряд, равномерно распределенный с поверхностной плотностью σ = 1 нКл/м 2 . Найти напряженность Е электрического поля в геометрическом центре полусферы.
Читайте также: Физика давление газа в цилиндре
По пластине длиной L = 0,5 м и шириной S = 0,2 м равномерно распределен заряд с поверхностной плотностью σ = 10 –7 Кл/м 2 . Пластина равномерно вращается с частотой f = 20 1/с относительно оси, проходящей через край пластины, параллельно стороне. Определить магнитный момент кругового тока, вызванного вращением пластины вокруг заданной оси.
По тонкому кольцу с внешним и внутренним радиусами (R1 = 5 см, R2 = 10 см) равномерно распределен заряд с поверхностной плотностью σ = 10 –9 Кл/м 2 . Вычислить напряженность электрического поля в точке, лежащей на оси кольца, на расстоянии а = 10 см от его центра.
На бесконечном тонкостенном цилиндре диаметром d = 0,164 м равномерно распределен заряд с поверхностной плотностью σ = 5,5·10 –6 Кл/м 2 . Определить напряженность в точке, отстоящей от поверхности цилиндра на расстоянии r = 4,81·10 –2 м.
Две концентрические сферы несут на себе равномерно распределенный заряд с поверхностными плотностями σ1 и σ2. Используя теорему Гаусса определить напряженность электрического поля в зависимости от расстояния до центра сфер r. Принять σ1 = σ, σ2 = –σ, где σ = 10 нКл/м 2 . Радиусы сфер R1 = R и R2 = 3R, где R = 10 см. Построить график зависимости напряженности Е(r).
Две концентрические сферы несут на себе равномерно распределенный заряд с поверхностными плотностями σ1 и σ2. Используя теорему Гаусса определить напряженность электрического поля в зависимости от расстояния до центра сфер г. Принять σ1 = σ, σ2 = –4σ, где σ = 50 нКл/м 2 . Радиусы сфер R1 = R и R2 = 2R, где R = 10 см. Построить график зависимости напряженности Е(r).
Видео:Выполнялка 89.Задача на нахождение НапряженностиСкачать
Найти напряженность поля на расстоянии 2 см от оси цилиндров
Помощь в написании контрольных, курсовых и дипломных работ здесь.
Найти напряженность электрического поля в точках, расположенных на расстояниях 2 см, 6 см и 18 см от оси цилиндров
Два бесконечно длинных коаксиальных цилиндра радиусами 5 см и 10 см заряжены равномерно с.
Найти напряженность поля на расстоянии 75 мм от оси цилиндра
В среде, относительная диэлектрическая проницаемость которой равна 29, находится тонкостенный.
Найти напряженность электрического поля на расстоянии 0,1 м и 0,4 м. от оси
Длинная тонкостенная металлическая труба радиусом 0,2 м несет на себе заряд с линейной плотностью.
Найти напряженность и потенциал электрического поля на оси кольца на расстоянии x от его центра
Тонкое диэлектрическое кольцо радиуса R заряжено с линейной плотностью λ=a*sinφ, где.
Найти напряженность поля на оси, проходящей через центр тела, в точке М, отстоящей от центра на расстоянии b
Электростатическое поле создается положительным зарядом q, равномерно распределенным по заряженному.
Определить напряженность поля на расстоянии от оси цилиндра
Вдоль оси бесконечно длинного равномерно заряженного цилиндра расположена заряженная нить с.
Найти напряженность электрического поля на расстоянии от нити
Есть бесконечно длинная нить заряженная положительно, с плотностью зарядов λ кл/м. Найти.
Найти напряжённость E электрического поля на расстоянии r1 = 3 см и r2 = 9 см , и построить график
Условие. Объёмная плотность заряда равномерно заряженного шара радиусом R = 5 см, изготовленного.
Найти зависимость напряженности электрического поля от расстояния, отсчитываемого от оси цилиндров
2)На двух коаксиальных бесконечных цилиндрах радиусами R = R 1 и R2 2R = равномерно распределены.
Найти напряженность поля в точке, расположенной на расстоянии 1 м от каждого из зарядов
Два одинаковых точечные заряды по 50 нКл каждый расположены на расстоянии 1,2 м друг от друга.
Видео:НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ суперпозиция полейСкачать
Вычислить напряженность в точках удаленных от оси цилиндров
Электростатика
§ 14. Напряженность электрического поля. Электрическое смещение
Условия задач и ссылки на решения на тему:
1 Электрическое поле создано двумя точечными зарядами Q1= 30 нКл Q2=-10 нКл. Расстояние между зарядами равно 20 см. Определить напряженность электрического поля в точке, находящейся на расстоянии r1=15 см от первого и на расстоянии r2=10 см от второго зарядов
РЕШЕНИЕ
2 Электрическое поле создано двумя параллельными бесконечными заряженными плоскостями с поверхностными плотностями заряда 0,4 и 0,1 мкКл/м2. Определить напряженность электрического поля, созданного этими заряженными плоскостями.
РЕШЕНИЕ
3 На пластинах плоского воздушного конденсатора находится заряд Q=10 нКл. Площадь каждой пластины конденсатора равна 100 см2. Определить силу, с которой притягиваются пластины. Поле между пластинами считать однородным
РЕШЕНИЕ
4 Электрическое поле создано бесконечной плоскостью, заряженной с поверхностной плотностью 400 нКл/м2, и бесконечной прямой нитью, заряженной с линейной плотностью τ=100 нКл/м. На расстоянии 10 см от нити находится точечный заряд Q=10 нКл. Определить силу, действующую на заряд, ее направление, если заряд и нить лежат в одной плоскости, параллельной заряженной плоскости
РЕШЕНИЕ
5 Точечный заряд Q=25 нКл находится в поле, созданном прямым бесконечным цилиндром радиусом R=1 см, равномерно заряженным с поверхностной плотностью 2 мкКл/м2. Определить силу, действующую на заряд, помещенный от оси цилиндра на расстоянии r=10 см
РЕШЕНИЕ
6 Электрическое поле создано тонкой бесконечно длинной нитью, равномерно заряженной с линейной плотностью 30 нКл/м. На расстоянии a=20 см от нити находится плоская круглая площадка радиусом r=1 см. Определить поток вектора напряженности через эту площадку, если плоскость ее составляет угол β=30° с линией напряженности, проходящей через середину площадки.
РЕШЕНИЕ
7 Две концентрические проводящие сферы радиусами R1=6 см и R2=10 см несут соответственно заряды Q1=1 нКл и Q2=-0,5 нКл. Найти напряженность поля в точках, отстоящих от центра сфер на расстояниях r1=5 см, r2=9 см и r3=15 см. Построить график E(r)
РЕШЕНИЕ
14.1 Определить напряженность электрического поля, создаваемого точечным зарядом Q=10 нКл на расстоянии r=10 см от него. Диэлектрик масло.
РЕШЕНИЕ
14.2 Расстояние между двумя точечными зарядами Q1=+8 нКл и Q2=-5,3 нКл равно 40 см. Вычислить напряженность поля в точке, лежащей посередине между зарядами. Чему равна напряженность, если второй заряд будет положительным?
РЕШЕНИЕ
14.3 Электрическое поле создано двумя точечными зарядами Q1=10 нКл и Q2=-20 нКл, находящимися на расстоянии d=20 см друг от друга. Определить напряженность поля в точке, удаленной от первого заряда на r1=30 см и от второго на r2=50 см.
РЕШЕНИЕ
14.4 Расстояние между двумя точечными положительными зарядами Q1=9Q и Q2=Q равно 8 см. На каком расстоянии r от первого заряда находится точка, в которой напряженность поля зарядов равна нулю? Где находилась бы эта точка, если бы второй заряд был отрицательным?
РЕШЕНИЕ
14.5 Два точечных заряда Q1=2Q и Q2=-Q находятся на расстоянии d друг от друга. Найти положение точки на прямой, проходящей через эти заряды, напряженность E поля в которой равна нулю
РЕШЕНИЕ
Читайте также: Восстановление свечной резьбы в блоке цилиндров
14.6 Электрическое поле создано двумя точечными зарядами Q1=40 нКл и Q2=-10 нКл, находящимися на расстоянии 10 см друг от друга. Определить напряженность поля в точке, удаленной от первого заряда на r1=12 см и от второго на r2=6 см.
РЕШЕНИЕ
14.7 Тонкое кольцо радиусом R=8 см несет заряд, равномерно распределенный с линейной плотностью т=10 нКл/м. Какова напряженность электрического поля в точке, равноудаленной от всех точек кольца на расстояние r= 10 см?
РЕШЕНИЕ
14.8 Полусфера несет заряд, равномерно распределенный с поверхностной плотностью 1 нКл/м2. Найти напряженность электрического поля в геометрическом центре полусферы.
РЕШЕНИЕ
14.9 На металлической сфере радиусом R=10 см находится заряд Q=1 нКл. Определить напряженность электрического поля в следующих точках: на расстоянии r1=8 см от центра сферы; на ее поверхности; на расстоянии r2=15 см от центра сферы. Построить график зависимости E от r.
РЕШЕНИЕ
14.10 Две концентрические металлические заряженные сферы радиусами R1=6 см и R2=10 см несут соответственно заряды Q1=1 нКл и Q2=-0,5 нКл. Найти напряженности E поля в точках, отстоящих от центра сфер на расстояниях r1=5 см, r2=9 см, r3=15 см. Построить график зависимости E(r).
РЕШЕНИЕ
14.11 Очень длинная тонкая прямая проволока несет заряд, равномерно распределенный по всей ее длине. Вычислить линейную плотность заряда, если напряженность поля на расстоянии a=0,5 м от проволоки против ее середины равна 200 В/м.
РЕШЕНИЕ
14.12 Расстояние между двумя длинными тонкими проволоками, расположенными параллельно друг другу, равно 16 см. Проволоки равномерно заряжены разноименными зарядами с линейной плотностью т=150 мкКл/м. Какова напряженность поля в точке, удаленной на r=10 см как от первой, так и от второй проволоки?
РЕШЕНИЕ
14.13 Прямой металлический стержень диаметром d=5 см и длиной 4 м несет равномерно распределенный по его поверхности заряд Q=500 нКл. Определить напряженность E поля в точке, находящейся против середины стержня на расстоянии a=1 см от его поверхности.
РЕШЕНИЕ
14.14 Бесконечно длинная тонкостенная металлическая трубка радиусом R=2 см несет равномерно распределенный по поверхности заряд 1 нКл/м2. Определить напряженность E поля в точках, отстоящих от оси трубки на расстояниях r1=1 см, r2=3 см. Построить график зависимости E(r).
РЕШЕНИЕ
14.15 Две длинные тонкостенные коаксиальные трубки радиусами R1=2 см и R2=4 см несут заряды, равномерно распределенные по длине с линейными плотностями τ1=1 τ2=-0,5 нКл/м. Пространство между трубками заполнено эбонитом. Определить напряженность E поля в точках, находящихся на расстояниях r1= 1 см, r2=3 см, r3=5 см от оси трубок. Построить график зависимости E от r.
РЕШЕНИЕ
14.16 На отрезке тонкого прямого проводника длиной 10 см равномерно распределен заряд с линейной плотностью τ=3 мкКл/м. Вычислить напряженность E, создаваемую этим зарядом в точке, расположенной на оси проводника и удаленной от ближайшего конца отрезка на расстояние, равное длине этого отрезка.
РЕШЕНИЕ
14.17 Тонкий стержень длиной l=12 см заряжен с линейной плотностью τ=200 нКл/м. Найти напряженность электрического поля в точке, находящейся на расстоянии r=5 см от стержня против его середины.
РЕШЕНИЕ
14.18 Тонкий стержень длиной l=10 см заряжен с линейной плотностью τ=400 нКл/м. Найти напряженность E электрического поля в точке, расположенной на перпендикуляре к стержню, проведенном через один из его концов, на расстоянии r=8 см от этого конца.
РЕШЕНИЕ
14.19 Электрическое поле создано зарядом тонкого равномерно заряженного стержня, изогнутого по трем сторонам квадрата. Длина стороны квадрата равна 20 см. Линейная плотность т зарядов равна 500 нКл/м. Вычислить напряженность E поля в точке A.
РЕШЕНИЕ
14.20 Два прямых тонких стержня длиной 12 см и 16 см каждый заряжены с линейной плотностью т=400 нКл/м. Стержни образуют прямой угол. Найти напряженность E поля в точке A (рис. 14.10).
РЕШЕНИЕ
14.21 Электрическое поле создано двумя бесконечными параллельными пластинами, несущими одинаковый равномерно распределенный по площади заряд 1 нКл/м2. Определить напряженность E поля между пластинами; вне пластин. Построить график изменения напряженности вдоль линии, перпендикулярной пластинам.
РЕШЕНИЕ
14.22 Электрическое поле создано двумя бесконечными параллельными пластинами, несущими равномерно распределенный по площади заряд с поверхностными плотностями 1 нКл/м2 и 3 нКл/м2. Определить напряженность E поля между пластинами; вне пластин. Построить график изменения напряженности вдоль линии, перпендикулярной пластинам.
РЕШЕНИЕ
14.23 Электрическое поле создано двумя бесконечными параллельными пластинами, несущими равномерно распределенный по площади заряд с поверхностными плотностями 2 нКл/м2 и -5 нКл/м2. Определить напряженность поля между пластинами; вне пластин. Построить график изменения напряженности вдоль линии, перпендикулярной пластинам
РЕШЕНИЕ
14.24 Две прямоугольные одинаковые параллельные пластины, длины сторон которых a=10 см и b = 15 см, расположены на малом по сравнению с линейными размерами пластин расстоянии друг от друга. На одной из пластин равномерно распределен заряд Q1 =50 нКл, на другой заряд Q2= 150 нКл. Определить напряженность электрического поля между пластинами
РЕШЕНИЕ
14.25 Две бесконечные параллельные пластины равномерно заряжены с поверхностной плотностью 10 нКл/м2 и -30 нКл/м2. Определить силу взаимодействия между пластинами, приходящуюся на площадь, равную 1 м2.
РЕШЕНИЕ
14.26 Две круглые параллельные пластины радиусом R=10 см находятся на малом по сравнению с радиусом расстоянии друг от друга. Пластинам сообщили одинаковые по модулю, но противоположные по знаку заряды Q1=Q2=Q. Определить этот заряд, если пластины притягиваются с силой F=2 мН. Считать, что заряды распределяются по пластинам равномерно.
РЕШЕНИЕ
14.27 Эбонитовый сплошной шар радиусом R=5 см несет заряд, равномерно распределенный с объемной плотностью 10 нКл/м3. Определить напряженность и смещение электрического поля в точках на расстоянии r1=3 см от центра сферы; на поверхности сферы; на расстоянии r2=10 см от центра сферы. Построить графики зависимостей E(r) и D(r).
РЕШЕНИЕ
14.28 Полый стеклянный шар несет равномерно распределенный по объему заряд. Его объемная плотность 100 нКл/м3. Внутренний радиус R1 шара равен 5 см, наружный R2=10 см. Вычислить напряженность E и смещение D электрического поля в точках, отстоящих от центра сферы на расстоянии r1=3 см; r2=6 см; r3=12 см. Построить графики зависимостей E(r) и D(r).
РЕШЕНИЕ
14.29 Длинный парафиновый цилиндр радиусом R=2 см несет заряд, равномерно распределенный по объему с объемной плотностью 10 нКл/м3. Определить напряженность E и смещение D электрического поля в точках, находящихся от оси цилиндра на расстоянии r1=1 см; r2=3 см. Обе точки равноудалены от концов цилиндра. Построить графики зависимостей E(r) и D(r).
РЕШЕНИЕ
14.30 Большая плоская пластина толщиной d=1 см несет заряд, равномерно распределенный по объему с объемной плотностью 100 нКл/м3. Найти напряженность электрического поля вблизи центральной части пластины вне ее, на малом расстоянии от поверхности.
РЕШЕНИЕ
Читайте также: Задний тормозной цилиндр калина от чего подходит
14.31 Лист стекла толщиной d=2 см равномерно заряжен с объемной плотностью 1 мкКл/м3. Определить напряженность E и смещение D электрического поля в точках A, B, C. Построить график зависимости E(x) ось x координат перпендикулярна поверхности листа стекла
РЕШЕНИЕ
14.32 На некотором расстоянии a=5 см от бесконечной проводящей плоскости находится точечный заряд Q=1 нКл. Определить силу, действующую на заряд со стороны индуцированного им заряда на плоскости.
РЕШЕНИЕ
14.33 На расстоянии a=10 см от бесконечной проводящей плоскости находится точечный заряд Q=20 нКл. Вычислить напряженность электрического поля в точке, удаленной от плоскости на расстояние а и от заряда Q на расстояние 2а.
РЕШЕНИЕ
14.34 Точечный заряд Q=40 нКл находится на расстоянии 30 см от бесконечной проводящей плоскости. Какова напряженность E электрического поля в точке A (рис. 14.12)?
РЕШЕНИЕ
14.35 Большая металлическая пластина расположена в вертикальной плоскости и соединена с землей. На расстоянии a=10 см от пластины находится неподвижная точка, к которой на нити длиной ℓ=12 см подвешен маленький шарик массой m=0,1 г. При сообщении шарику заряда Q он притянулся к пластине, в результате чего нить отклонилась от вертикали на угол α=30°. Найти заряд Q шарика.
РЕШЕНИЕ
14.36 Тонкая нить несет равномерно распределенный по длине заряд с линейной плотностью τ=2 мкКл/м. Вблизи средней части нити на расстоянии r=1 см, малом по сравнению с ее длиной, находится точечный заряд Q=0,1 мкКл. Определить силу F, действующую на заряд.
РЕШЕНИЕ
14.37 Большая металлическая пластина несет равномерно распределенный по поверхности заряд 10 нКл/м2. На малом расстоянии от пластины находится точечный заряд Q=100 нКл. Найти силу F, действующую на заряд.
РЕШЕНИЕ
14.38 Точечный заряд Q=1 мкКл находится вблизи большой равномерно заряженной пластины против ее середины. Вычислить поверхностную плотность заряда пластины, если на точечный заряд действует сила F=60 мН.
РЕШЕНИЕ
14.39 Между пластинами плоского конденсатора находится точечный заряд Q=30 нКл. Поле конденсатора действует на заряд с силой F1=10 мН. Определить силу F2 взаимного притяжения пластин, если площадь 5 каждой пластины равна 100 см2.
РЕШЕНИЕ
14.40 Параллельно бесконечной пластине, несущей заряд, равномерно распределенный по площади с поверхностной плотностью 20 нКл/м2. расположена тонкая нить с равномерно распределенным по длине зарядом (т=0,4 нКл/м). Определить силу F, действующую на отрезок нити длиной ℓ=1 м.
РЕШЕНИЕ
14.41 Две одинаковые круглые пластины площадью по 100 см2 каждая расположены параллельно друг другу. Заряд Q1 одной пластины равен +100 нКл, другой Q2=-100 нКл. Определить силу F взаимного притяжения пластин в двух случаях, когда расстояние между ними: 1) r1=2 см; 2) r2=10 м.
РЕШЕНИЕ
14.42 Плоский конденсатор состоит из двух пластин, разделенных стеклом. Какое давление производят пластины на стекло перед пробоем, если напряженность E электрического поля перед пробоем равна 30 МВ/м?
РЕШЕНИЕ
14.43 Две параллельные, бесконечно длинные прямые нити несут заряд, равномерно распределенный по длине с линейными плотностями τ1=0,1 мкКл/м и τ2=0,2 мкКл/м. Определить силу взаимодействия, приходящуюся на отрезок нити длиной 1 м. Расстояние между нитями равно 10 см.
РЕШЕНИЕ
14.44 Прямая, бесконечная, тонкая нить несет равномерно распределенный по длине заряд 1 мкКл/м. В плоскости, содержащей нить, перпендикулярно нити находится тонкий стержень длиной l. Ближайший к нити конец стержня находится на расстоянии l от нее. Определить силу , действующую на стержень, если он заряжен с линейной плотностью τ2=0,1 мкКл/м.
РЕШЕНИЕ
14.45 Металлический шар имеет заряд Q1=0,1 мкКл. На расстоянии, равном радиусу шара, от его поверхности находится конец нити, вытянутой вдоль силовой линии. Нить несет равномерно распределенный по длине заряд Q2= 10 нКл. Длина нити равна радиусу шара. Определить силу F, действующую на нить, если радиус шара равен 10 см.
РЕШЕНИЕ
14.46 Соосно с бесконечной прямой равномерно заряженной линией 0,5 мкКл/м расположено полукольцо с равномерно распределенным зарядом 20 нКл/м. Определить силу F взаимодействия нити с полукольцом.
РЕШЕНИЕ
14.47 Бесконечная прямая нить несет равномерно распределенный заряд с линейной плотностью τ1=1 мкКл/м. Соосно с нитью расположено тонкое кольцо, заряженное равномерно с линейной плотностью τ2=10 нКл/м. Определить силу, растягивающую кольцо. Взаимодействием между отдельными элементами кольца пренебречь.
РЕШЕНИЕ
14.48 Две бесконечно длинные равномерно заряженные тонкие нити τ1=τ2=τ=1 мкКл/м скрещены под прямым углом друг к другу. Определить силу их взаимодействия.
РЕШЕНИЕ
14.49 Бесконечная плоскость несет заряд, равномерно распределенный с поверхностной плотностью 1 мкКл/м2. На некотором расстоянии от плоскости параллельно ей расположен круг радиусом r = 10 см. Вычислить поток ФЕ вектора напряженности через этот круг.
РЕШЕНИЕ
14.50 Плоская квадратная пластина со стороной длиной a, равной 10 см, находится на некотором расстоянии от бесконечной равномерно заряженной 1 мкКл/м2 плоскости. Плоскость пластины составляет угол 30 с линиями поля. Найти поток электрического смещения через эту пластину.
РЕШЕНИЕ
14.51 В центре сферы радиусом R=20 см находится точечный заряд Q=10 нКл. Определить поток вектора напряженности через часть сферической поверхности площадью S=20 см2
РЕШЕНИЕ
14.52 В вершине конуса с телесным углом 0,5 ср находится точечный заряд Q=30 нКл. Вычислить поток электрического смещения через площадку, ограниченную линией пересечения поверхности конуса с любой другой поверхностью.
РЕШЕНИЕ
14.53 Прямоугольная плоская площадка со сторонами, длины а и b которых равны 3 и 2 см соответственно, находится на расстоянии R= 1 м от точечного заряда Q=1 мкКл. Площадка ориентирована так, что линии напряженности составляют угол 30 с ее поверхностью. Найти поток вектора напряженности через площадку
РЕШЕНИЕ
14.54 Электрическое поле создано точечным зарядом Q=0,1 мкКл. Определить поток электрического смещения через круглую площадку радиусом R =30 см. Заряд равноудален от краев площадки и находится на расстоянии a=40 см от ее центра
РЕШЕНИЕ
14.55 Заряд Q=1 мкКл равноудален от краев круглой площадки на расстоянии r=20 см. Радиус площадки равен 12 см. Определить среднее значение напряженности E в пределах площадки
РЕШЕНИЕ
14.56 Электрическое поле создано бесконечной прямой равномерно заряженной линией 0,3 мкКл/м. Определить поток электрического смещения через прямоугольную площадку, две большие стороны которой параллельны заряженной линии и одинаково удалены от нее на расстояние r=20 см. Стороны площадки имеют размеры a=20 см, b=40 см
РЕШЕНИЕ
💡 Видео
Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать
Урок 219. Задачи на напряженность электрического поля - 1Скачать
Напряженность электрического поля [Физзадачи #9]Скачать
10 класс, 18 урок, Напряженность электрического поляСкачать
Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.Скачать
напряжённость одного заряда в двух точкахСкачать
Потенциал электрического поля. 10 класс.Скачать
Урок 218. Напряженность электрического поляСкачать
Электрическое поле/Напряженность и потенциал поля/Разность потенциалов/Работа поляСкачать
Лекция 2-2 Потенциал - примерыСкачать
Расчет напряженности электростатического поляСкачать
Напряженность электрического поляСкачать
Электрическое поле. Напряженность электрического поля. Практическая часть. 8 класс.Скачать
Задача №2. Потенциал проводящей сферы.Скачать
Техника высоких напряжений ДолгиновСкачать
физика 10-11 база. лекция 15. Электростатика. Принцип суперпозиции. Линии напряженности.Скачать
Как решаются задачи по теме: Напряженность электрического поляСкачать