Вычислить площадь поверхности цилиндра вырезаемой конусом

Авто помощник

Площадь S плоской области D в прямоугольных координатах вычисля­ется по формуле:

Пример. Вычислить площадь области, ограниченной линиями и у = х + 6.

Решение: Найдем точки пересечения данных линий, для этого решим систему уравнений:

Вычислить площадь поверхности цилиндра вырезаемой конусом

Решением будет пара значений (-3; 9) и (-2; 4) — координаты точек пересечения графиков

Область D запишем в виде системы неравенств

Согласно формуле (1), получим

Вычисление объема тела

Вычислить площадь поверхности цилиндра вырезаемой конусом

Видео:11 класс, 17 урок, Площадь поверхности конусаСкачать

11 класс, 17 урок, Площадь поверхности конуса

Объем цилиндрического тела, ограниченного сверху поверхностью z=f(x, у), снизу плоскостью z = 0 и сбоку прямой цилиндрической поверхностью, вырезающей на плоскости xOy (z = 0) область D , вычисляется по формуле

Пример. Вычислить объем тела, ограниченного поверхностями z = 2x+1, x= 0, у = 4,

Решение:Тело, ограниченное заданными поверхностями, представляет собой вертикальный параболический цилиндр, расположенный в I октанте. Сверху тело ограничено плоскостью z = 2x+1, сбоку параболичес­ким цилиндром у =x и плоскостями х = 0 и у = 4, снизу

параболой у =x и прямыми х = 0 и у = 4. Найдем точки пересечения параболы у =x и прямой у = 4:

Получаем два решения: (-2; 4) и (2; 4). Значение не рассматриваем, т.к. цилиндр расположен в I октанте. Область D запишем в виде системы неравенств 0 ≤ x ≤ 2, x ≤ y ≤ 4. Согласно формуле (3), получим

Пример. Вычислить объем тела, ограниченного поверхностями

Решение: Данное тело есть прямой круговой цилиндр, ограниченный сверху плоскостью

, а снизу — кругом в плоскости z=0. Область D в основании цилиндра запишем в виде системы неравенств

Согласно формуле (3), получим

Первый интеграл табличный и равен:

Читайте также: Как определить емкость цилиндра

Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Вычислить площадь поверхности цилиндра вырезаемой конусом

Второй интеграл вычисляется подстановкой ;следовательно, второй интеграл равен:

Вычисление площади поверхности

Если поверхность задана уравнением z=f(x, у) и проектируется в область D плоскости хОу (z = 0), то площадь S поверхности вычисляется по формуле

Если поверхность проектируется на плоскость yOz (x = 0), то уравнение поверхности следует решить относительно переменной х и формула примет вид

Если поверхность проектируется на плоскость хОу(у = 0), то уравнение поверхности следует решить относительно переменной у и формула примет вид

Пример.Вычислить площадь треугольника, образованного при пересе­чении плоскости

x + 3y + 2z = 6 с координатными плоскостями.

Решение: найдем отрезки, отсекаемые на координатных осях данной пло­скостью:

Вычислить площадь поверхности цилиндра вырезаемой конусом

Чтобы воспользоваться фор­мулой (4), решим уравнение данной плоскости относительно переменной z и найдем частные производные:

Видео:60. Площадь поверхности цилиндраСкачать

60. Площадь поверхности цилиндра

При z = 0 имеем х + 3у = 6, откуда ; следовательно, в плоскости z = 0 область D запишется в виде системы неравенств

Пример. Вычислить площадь части поверхности цилиндра , заключенной между плоскостями z = 0, z = 4x, y = 0.

Решение: искомая поверхность лежит в I октанте. Проекция поверхности на плоскость xOz (у = 0) есть прямоугольный треугольник, в котором ОА=х = 4 и уравнение гипотенузы имеет вид z = 4x. Следова­тельно, область D в плоскости xOz определяется системой неравенств 0 ≤ x ≤ 4, 0 ≤ z ≤ 4x

Вычислить площадь поверхности цилиндра вырезаемой конусом

Поскольку заданная поверхность спроектирована на плоскость xOz, для вычисления площади поверхности применим формулу (6). Из уравнения цилиндра получим

Находим частные производные:

Тогда Для вычисления последнего интеграла применили подстановку .

Вычислить площадь поверхности цилиндра вырезаемой конусом

Пример. Вычислить площадь части поверхности цилиндра , вырезанной цилиндром .

Решение:искомая поверхность образована пересечением двух цилиндров и . В эти уравнения поверхностей входят квадраты переменных, поэтому искомая поверхность симметрична относительно каждой из координатных плоскостей и для вычисления рассмотрим 1/8 ее часть, лежащую в I октанте.

Читайте также: Сплошной цилиндр плавает в ртути в вертикальном положении

Видео:Нахождение площади боковой поверхности цилиндраСкачать

Нахождение площади боковой поверхности цилиндра

Область интегрирования D представляет собой 1/4 часть круга , заключенного между положительными полуосями Ох и Оу, и определяется системой неравенств

Из уравнения имеем . Далее, находим частные производные

1. Вычислите площадь фигуры, ограниченной линиями ;

2. Вычислите объем тела, огра­ниченного поверхностями

3. Вычислите площадь части по­верхности цилиндра , ограни­ченного плоскостями

1. Вычислите площадь фигуры, ограниченной гиперболой и прямой ;

2. Вычислите объем тела, огра­ниченного поверхностями

3. Вычислите площадь части по­верхности цилиндра у = х 2 + 2, огра­ниченного плоскостями

Вычислить площадь поверхности цилиндра вырезаемой конусом

1. Вычислите площадь фигуры, ограниченной линиями

2. Вычислите объем тела, огра­ниченного поверхностями

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

3. Вычислите площадь части по­верхности цилиндра , ограни­ченного плоскостями z = 0, z = 8;

1. Вычислите площадь фигуры, ограниченной линиями

2. Вычислите объем тела, огра­ниченного

3. Вычислите площадь части по­верхности цилиндра , ограни­ченного плоскостями z = 0, z = 2x, y = 0, x = 0.

1. Назовите формулу для вычисления площади плоской фигуры;

2. Как найти объем цилиндрического тела, ограниченного сверху поверхностью z=f(x, у), снизу плоскостью z = 0 и сбоку прямой цилиндрической поверхностью, вырезающей на плоскости xOy (z = 0) область D?

3. По какой формуле вычисляется площадь S поверхности, если поверхность задана уравнением

z=f(x, у) и проектируется в область D плоскости хОу (z = 0)?

5.5 Необходимые расчеты. Анализ результатов расчетов

5.7 Ответы на контрольные вопросы

1. Колягин Ю.М. , Луканкин Г.Л., Яковлев Г.Н. Математика в 2-х томах: Учебное пособие — М. Новая волна, 2005, 2 кн., с. 453-457;

2. Подольский В. А. Сборник задач по математике: Учебное пособие — М. Высшая школа, 2003, с.375-381;

📽️ Видео

62. Площадь поверхности конусаСкачать

62. Площадь поверхности конуса

Площадь сферы внутри цилиндра. Поверхностный интегралСкачать

Площадь сферы внутри цилиндра. Поверхностный интеграл

ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРАСкачать

ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРА

11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Пересечение двух цилиндров: объем и площадь поверхности через двойной интегралСкачать

Пересечение двух цилиндров: объем и площадь поверхности через двойной интеграл

Объём цилиндраСкачать

Объём цилиндра

🌟 Откройте мир конусов: исследуем площадь их поверхности!Скачать

🌟 Откройте мир конусов: исследуем площадь их поверхности!

ЗАДАНИЕ 8 из ЕГЭ_53Скачать

ЗАДАНИЕ 8 из ЕГЭ_53

Площадь полной поверхности цилиндраСкачать

Площадь полной поверхности цилиндра

№538. Площадь боковой поверхности цилиндра равна 5. Найдите площадь осевогоСкачать

№538. Площадь боковой поверхности цилиндра равна 5. Найдите площадь осевого

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДРСкачать

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДР

ГЕОМЕТРИЯ 11 класс: Цилиндр. Площадь поверхностиСкачать

ГЕОМЕТРИЯ 11 класс: Цилиндр. Площадь поверхности

Объем и площадь поверхности цилиндра (видео 44) | Подобие. Геометрия | МатематикаСкачать

Объем и площадь поверхности цилиндра (видео 44) | Подобие. Геометрия | Математика

Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать

Миникурс по геометрии. Куб, призма, цилиндр и конус

ЦИЛИНДР. КОНУС. ШАР. ЕГЭ. ЗАДАНИЕ 5.СТЕРЕОМЕТРИЯСкачать

ЦИЛИНДР. КОНУС. ШАР. ЕГЭ. ЗАДАНИЕ 5.СТЕРЕОМЕТРИЯ
Поделиться или сохранить к себе:
Технарь знаток