Вычислить радиус инерции сплошного однородного цилиндра

Авто помощник

Видео:Расчет момента инерции цилиндраСкачать

Расчет момента инерции цилиндра

Вычислить радиус инерции сплошного однородного цилиндра

Как известно, масса в динамике поступательного движения играет важную роль, определяя инерционные свойства движущихся тел. В динамике вращения вместо массы пользуются моментом инерции. Рассмотрим в статье, что это за величина и как определяется момент инерции цилиндра относительно оси.

Видео:Урок 94. Вычисление моментов инерции телСкачать

Урок 94. Вычисление моментов инерции тел

Что такое момент инерции?

Эту величину обычно обозначают буквой I. Для материальной точки математическая формула момента инерции записывается так:

Где r — расстояние до оси вращения от точки массой m. Из формулы понятно, что единицей измерения величины являются килограммы на квадратный метр (кг*м 2 ).

Если тело имеет сложную форму и его объемная плотность является переменной, тогда для определения I следует использовать такое интегральное выражение:

Где dm — это элементарная масса, находящаяся от оси вращения на расстоянии r.

Таким образом, момент инерции определяет распределение материи в теле сложной формы относительно конкретной оси вращения системы.

Видео:Расчёт момента инерции тела относительно оси вращения. Момент инерции однородного стержняСкачать

Расчёт момента инерции тела относительно оси вращения. Момент инерции однородного стержня

Сплошной цилиндр и главная ось

Вычислить радиус инерции сплошного однородного цилиндра

Момент инерции сплошного цилиндра может быть вычислен вокруг абсолютно любой оси с использованием интегрального выражения, записанного в предыдущем пункте. Здесь рассмотрим ситуацию, когда цилиндр массой M, радиусом R и высотой L вращается вокруг главной оси. Последняя представляет собой прямую, параллельную генератрисе фигуры и проходящую через центры ее круглых оснований.

Не будем вдаваться в подробности математических вычислений по интегральной формуле, а приведем сразу конечное выражение:

Мы видим, что чем больше масса цилиндра и его радиус, тем больше момент инерции I1. В то же время эта величина никак не зависит от высоты фигуры L, то есть момент инерции тонкого диска можно вычислить также по этой формуле.

Отметим, что если всю массу цилиндра собрать в одну материальную точку, находящуюся от оси вращения на расстоянии радиуса R, то для нее момент инерции окажется в два раза больше, чем для сплошного цилиндра.

Видео:5. Момент инерции простейших телСкачать

5.  Момент инерции простейших тел

Однородный цилиндр и перпендикулярная генератрисе ось

Вычислить радиус инерции сплошного однородного цилиндра

Теперь возьмем однородный цилиндр из примера выше и перевернем его на бок. Начнем вращать объект вокруг оси, которая проходит также через центр его масс, но уже перпендикулярна генератрисе (главной оси). Чему будет равен момент инерции цилиндра однородного в данном случае?

Как и в примере выше, здесь также ограничимся приведением соответствующего выражения. Оно будет иметь следующий вид:

Момент инерции I2 имеет более сложную зависимость от параметров цилиндра, чем I1, поскольку он определяется не только массой и радиусом, но и высотой фигуры. Заметим, что два слагаемых этой формулы представляют собой два крайних случая:

  • Если цилиндр слишком маленькую высоту имеет, то мы получаем диск, который, вращаясь вокруг оси, проходящей через его диаметр, будет иметь момент 1/4*M*R 2 .
  • Если радиус цилиндра стремится к нулю, то рассматриваемый объект превратится в стержень, и его момент инерции станет равным 1/12*M*L 2 .

Видео:Расчет момента инерции диска или цельного цилиндраСкачать

Расчет момента инерции диска или цельного цилиндра

Полый цилиндр

Вычислить радиус инерции сплошного однородного цилиндра

Выше мы рассмотрели, как рассчитывать момент инерции цилиндра вращающегося и однородного. Теперь предположим, что высота цилиндра и его масса остались теми же самыми, однако он стал полым, то есть, имеет два радиуса: внешний R1 и внутренний R2.

Применение все той же интегральной формулы позволяет получить выражение для момента инерции цилиндра полого, который вращается вокруг своей главной оси. Соответствующая формула выглядит так:

Это выражение позволяет сделать важный вывод: при одинаковых массах полого и сплошного цилиндров первый обладает большим моментом инерции. Связан этот факт с тем, что большая часть массы полого цилиндра находится дальше от оси вращения, а как видно из формул, от радиуса изучаемая величина растет квадратично.

Вычислить радиус инерции сплошного однородного цилиндра

Видео:момент инерции цилиндраСкачать

момент инерции цилиндра

Где используются знания величин I для цилиндров?

Пожалуй, основной областью применения изложенной выше теории является автомобильная промышленность. В частности, коленчатый вал автомобиля снабжен тяжелым сплошным маховиком, имеющим цилиндрическую форму. Необходим маховик для того, чтобы обеспечить максимальную плавность вращения коленчатого вала, что отражается на плавности автомобильного хода. Маховик гасит любые большие угловые ускорения как во время разгона транспортного средства, так при его торможении.

Читайте также: Двухсторонний цилиндр мтз 80 рулевой

Вычислить радиус инерции сплошного однородного цилиндра

Из формулы выше для момента инерции I1 понятно, что для увеличения этой величины выгоднее увеличить радиус, чем массу цилиндра (маховика). Так, удвоение массы приведет лишь к удвоению момента инерции. Однако если увеличить в два раза радиус, то I1 возрастет аж в 4 раза, что обеспечит более эффективное использование маховика.

Видео:2 а Моменты инерции сферы и шараСкачать

2 а  Моменты инерции сферы и шара

Пример решения задачи

Прежде чем решать задачу, скажем несколько слов о динамике вращения. Как и в динамике поступательного движения, в ней существует формула, подобная второму закону Ньютона. Эта формула называется уравнением моментов. Записывается она так:

Где L — момент импульса, M — момент внешних сил. Чаще всего это уравнение записывают в следующем виде:

Здесь α — ускорение угловое. Из этого выражения видна аналогия со вторым ньютоновским законом.

Теперь перейдем к решению задачи. Известно, что сила в 100 Н действует по касательной к цилиндрической поверхности перпендикулярно главной оси вращения сплошного цилиндра на расстоянии 20 см. Масса цилиндра равна 10 кг, а его радиус составляет 20 см. Необходимо определить угловую скорость ω цилиндра через 5 секунд после начала действия силы.

Угловая скорость рассчитывается по формуле для равноускоренного движения:

Выражая ускорение из уравнения моментов и подставляя его в выражение, получим:

Момент силы вычисляется так:

Где по условию задачи d = R. Подставляя это выражение и выражение для I сплошного цилиндра, получим конечную рабочую формулу:

Осталось сюда подставить все величины в единицах СИ и записать ответ: ω = 500 рад/с, что равно приблизительно 80 оборотам в секунду.

Видео:Момент инерцииСкачать

Момент инерции

Вычислить радиус инерции сплошного однородного цилиндра

Динамика:
Динамика материальной системы
§ 34. Геометрия масс: центр масс материальной системы, моменты инерции твердых тел

34.1 Коленчатый вал трехцилиндрового двигателя, изображенный на рисунке, состоит из трех колен, расположенных под углом 120° друг к другу. Определить положение центра масс коленчатого вала, считая, что массы колен сосредоточены в точках A, B и D, причем mA=mB=mD=m, и пренебрегая массами остальных частей вала. Размеры указаны на рисунке.
РЕШЕНИЕ

34.2 Найти уравнения движения центра масс шарнирного параллелограмма OABO1, а также уравнение траектории его центра масс при вращении кривошипа OA с постоянной угловой скоростью ω. Звенья параллелограмма — однородные стержни, причем OA=O1B=AB/2=a.
РЕШЕНИЕ

34.3 К ползуну I массы M1 посредством тонкой невесомой нити прикреплен груз II массы M2. При колебаниях груза по закону φ=φ0 sin ωt ползун скользит по неподвижной горизонтальной гладкой поверхности. Найти уравнение движения ползуна x1=f(t), считая, что в начальный момент (t=0) ползун находился в начале отсчета O оси x. Длина нити равна l.
РЕШЕНИЕ

34.4 Определить положение центра масс центробежного регулятора, изображенного на рисунке, если масса каждого из шаров A и B равна M1, масса муфты D равна M2. Шары A и B считать точечными массами. Массой стержней пренебречь.
РЕШЕНИЕ

34.5 Определить траекторию центра масс механизма эллипсографа, состоящего из муфт A и B массы M1 каждая, кривошипа OC массы M2 и линейки AB массы 2M2; дано: OC=AC=CB=l. Считать, что линейка и кривошип представляют однородные стержни, а муфты — точечные массы.
РЕШЕНИЕ

34.6 К вертикальному валу AB прикреплены два одинаковых груза E и D с помощью двух перпендикулярных оси AB и притом взаимно перпендикулярных стержней OE=OD=r. Массами стержней и вала пренебречь. Грузы считать точечными массами. Найти положение центра масс C системы, а также центробежные моменты инерции Jxz, Jyz, Jxy.
РЕШЕНИЕ

34.7 Вычислить момент инерции стального вала радиуса 5 см и массы 100 кг относительно его образующей. Вал считать однородным сплошным цилиндром.
РЕШЕНИЕ

34.8 Вычислить момент инерции тонкого однородного полудиска массы M и радиуса r относительно оси, проходящей вдоль диаметра, ограничивающего полудиск.
РЕШЕНИЕ

34.9 Вычислить осевые Jx и Jy моменты инерции изображенной на рисунке однородной прямоугольной пластинки массы M относительно осей x и y.
РЕШЕНИЕ

34.10 Вычислить моменты инерции изображенного на рисунке однородного прямоугольного параллелепипеда массы M относительно осей x, y и z.
РЕШЕНИЕ

34.11 В тонком однородном круглом диске радиуса R высверлено концентрическое отверстие радиуса r. Вычислить момент инерции этого диска массы M относительно оси z, проходящей через его центр масс перпендикулярно плоскости диска.
РЕШЕНИЕ

34.12 Вычислить момент инерции тонкой однородной пластинки массы M, имеющей форму равнобедренного треугольника с высотой h, относительно оси, проходящей через ее центр масс C параллельно основанию.
РЕШЕНИЕ

34.13 Однородная металлическая пластинка выполнена в виде равностороннего треугольника. Масса пластинки равна M, l — длина ее стороны. Вычислить момент инерции пластинки относительно оси z, проходящей через ее вершину параллельно основанию.
РЕШЕНИЕ

34.14 Однородная равносторонняя треугольная пластина имеет массу M и длину стороны l. Вычислить момент инерции пластины относительно оси z, проходящей через вершину пластины перпендикулярно ее плоскости.
РЕШЕНИЕ

Читайте также: Снятие главного тормозного цилиндра ауди а6

34.15 Вычислить моменты инерции относительно трех взаимно перпендикулярных осей x, y и z тонкой однородной эллиптической пластинки массы M, ограниченной контуром x2/a2+y2/b2=1.
РЕШЕНИЕ

34.16 Определить момент инерции однородного полого шара массы M относительно оси, проходящей через его центр тяжести. Внешний и внутренний радиусы соответственно равны R и r.
РЕШЕНИЕ

34.17 Вычислить момент инерции однородной тонкой оболочки, выполненной в виде полусферы радиуса R, относительно оси, проходящей через центр полусферы перпендикулярно к ограничивающей ее плоскости. Масса M оболочки равномерно распределена по поверхности полусферы.
РЕШЕНИЕ

34.18 Вычислить радиус инерции сплошного однородного цилиндра относительно оси z, перпендикулярной оси цилиндра и отстоящей от его центра масс C на расстоянии 10 см, если радиус цилиндра равен 4 см, а высота 40 см.
РЕШЕНИЕ

34.19 Маятник состоит из тонкого однородного стержня AB массы M1, к концу которого прикреплен однородный диск C массы M2. Длина стержня равна 4r, где r — радиус диска. Вычислить момент инерции маятника относительно его оси привеса O, перпендикулярной плоскости маятника и отстоящей на расстоянии r от конца стержня.
РЕШЕНИЕ

34.20 Тонкий однородный стержень AB длины 2l и массы M прикреплен в центре O к вертикальной оси, образуя с ней угол α. Вычислить моменты инерции стержня Jx, Jy и центробежный момент инерции Jxy. Оси координат показаны на рисунке.
РЕШЕНИЕ

34.21 Однородный круглый диск массы M и радиуса r прикреплен к оси AB, отстоящей от центра масс C на расстоянии OC=r/2. Вычислить осевые и центробежные моменты инерции диска.
РЕШЕНИЕ

34.22 Вычислить момент инерции однородной треугольной пластинки ABC массы M относительно оси x, проходящей через его вершину A в плоскости пластинки, если даны расстояния от точек B и C до оси x; BM=hB, CN=hC.
РЕШЕНИЕ

34.23 По данным задачи 34.1 определить центробежные моменты инерции Jxz, Jyz, Jxy коленчатого вала.
РЕШЕНИЕ

34.24 Однородный круглый диск массы M эксцентрично насажен на ось z, перпендикулярную его плоскости. Радиус диска равен r, эксцентриситет OC=a, где C — центр масс диска. Вычислить осевые Jx, Jy, Jz и центробежные Jxy, Jxz, Jyz моменты инерции диска. Оси координат показаны на рисунке.
РЕШЕНИЕ

34.25 По данным задачи 34.24 вычислить момент инерции диска относительно оси z1, лежащей в вертикальной плоскости xz и образующей с осью z угол φ.
РЕШЕНИЕ

34.26 Однородный круглый диск массы M насажен на ось z, проходящую через его центр масс C. Ось симметрии диска z1 лежит в вертикальной плоскости симметрии xz и образует с осью z угол α. Радиус диска равен r. Вычислить центробежные моменты инерции диска Jxz, Jyz, Jxy (оси координат показаны на рисунке).
РЕШЕНИЕ

34.27 Решить предыдущую задачу в предположении, что диск эксцентрично насажен на ось z, причем эксцентриситет OC=a.
РЕШЕНИЕ

34.28 Однородный круглый диск радиуса R насажен на ось вращения z, проходящую через точку O и составляющую с осью симметрии диска Cz1 угол α. Масса диска равна M. Определить момент инерции Jz диска относительно оси вращения z и центробежные моменты инерции Jxz и Jyz, если OL — проекция оси z на плоскость диска, OE=a, OK=b.
РЕШЕНИЕ

34.29 Однородная прямоугольная пластинка OABD массы M со сторонами a и b прикреплена стороной OA к оси OE. Вычислить центробежные моменты инерции пластинки Jxz, Jyz и Jxy.
РЕШЕНИЕ

34.30 Однородная прямоугольная пластинка массы M со сторонами длины a и b прикреплена к оси z, проходящей через одну из ее диагоналей. Вычислить центробежный момент инерции Jyz пластинки относительно осей y и z, лежащих вместе с пластинкой в плоскости рисунка. Начало координат совмещено с центром масс пластинки.
РЕШЕНИЕ

34.31 Вращающаяся часть подъемного крана состоит из стрелы CD длины L и массы M1, противовеса E массы M2 и груза K массы M3. Рассматривая стрелу как однородную тонкую балку, а противовес E и круг K как точечные массы, определить момент инерции Jz крана относительно вертикальной оси вращения z и центробежные моменты инерции относительно осей координат x, y, z, связанных с краном. Центр масс всей системы находится на оси z; стрела CD расположена в плоскости yz.
РЕШЕНИЕ

Видео:Нахождение момента инерции стержня путем интегрированияСкачать

Нахождение момента инерции стержня путем интегрирования

Момент инерции цилиндра сплошного и полого: разное положение осей вращения

Вычислить радиус инерции сплошного однородного цилиндра

Знание момента инерции тела позволяет воспользоваться законом сохранения момента импульса либо выражением для описания кругового движения с угловым ускорением. В данной статье рассмотрим, как находить для цилиндра момент инерции при различном положении осей вращения.

Видео:Определение моментов инерции твёрдых тел методом крутильных колебаний (лабораторная работа М30)Скачать

Определение моментов инерции твёрдых тел методом крутильных колебаний (лабораторная работа М30)

Момент инерции: математическое определение

Осевой момент инерции вводится в физику благодаря изучению законов вращательного движения тел. Для точки материальной с массой m, вращающейся на расстоянии r от оси, момент инерции будет равен:

Читайте также: Постоянные пропуски зажигания в одном цилиндре

В общем же случае для тела, которое имеет произвольное распределение вещества в пространстве (любую геометрическую форму), величину I можно вычислить так:

По сути, это выражение является обобщением предыдущего. В нем производится суммирование (интегрирование) моментов от каждой элементарной частицы dm, дистанция до оси от которой равна r.

Если говорить о физическом значении рассматриваемой величины I, то она показывает, насколько «сильно» система сопротивляется воздействию внешнего момента силы, который пытается ее раскрутить или, наоборот, остановить.

Видео:Урок 97. Теорема ШтейнераСкачать

Урок 97. Теорема Штейнера

Момент инерции цилиндра относительно оси, его основаниям перпендикулярной

Из приведенной выше формулы можно понять, что величина I является характеристикой всей вращающейся системы, то есть она зависит как от формы тела и распределения в нем массы, так и от относительного положения оси.

В данном пункте рассмотрим простой случай: определить необходимо момент инерции для сплошного цилиндра, ось вращения которого перпендикулярна его основаниям и проходит через гравитационный центр фигуры.

Вычислить радиус инерции сплошного однородного цилиндра

Для решения проблемы применим интегральную формулу для I. В процессе операции интегрирования мысленно разобьем цилиндр на тонкие колечки толщиной dr. Каждое колечко будет иметь объем: dV = 2*pi*r*dr*h, здесь h — высота фигуры. Учитывая, что dm = ρ*dV, где ρ — плотность цилиндра, получаем:

I = ∫r 2 dm = ρ*∫r 2 dV = 2*pi*ρ*h*∫r 3 dr

Этот интеграл необходимо вычислить для пределов от 0 до R, где R — радиус фигуры. Тогда получим:

I = 2*pi*ρ*h*∫ R 0r 3 dr = 2*pi*ρ*h/4*(r 4 )∣ R 0 = pi*ρ*h*R 4 /2

Воспользовавшись формулой для массы цилиндра через его объем и плотность, приходим к конечному выражению:

Мы получили формулу инерции момента цилиндра однородного. Она показывает, что величина I для этой фигуры в 2 раза меньше, чем для материальной точки аналогичной массы, которая вращается на расстоянии радиуса цилиндра от оси.

Видео:1.257бСкачать

1.257б

Момент инерции полого цилиндра

Теперь оставим ось на том же месте и найдем значение I для цилиндра с пустотой внутри (втулка, труба). Такую фигуру описывают двумя радиусами: внешним R1 и внутренним R2. В этом случае для интегрирования применяется абсолютно тот же подход, что и для сплошного цилиндра, только пределы теперь изменяются от R2 до R1. Имеем:

Вычислить радиус инерции сплошного однородного цилиндра

Для дальнейшего упрощения этой формулы воспользуемся разложением на множители выражения в скобках, получим:

Часть этого выражения вместе с первыми скобками является массой полого цилиндра, поэтому получаем конечную формулу:

Отсюда видно, что момент инерции полого цилиндра больше этого значения для сплошного цилиндра аналогичной массы и такого же внешнего радиуса на величину m*R2 2 /2. Этот результат не вызывает удивления, поскольку в полом цилиндре центр масс находится от оси вращения дальше, чем в сплошном.

Вычислить радиус инерции сплошного однородного цилиндра

Видео:Момент инерции абсолютно твердого тела. 10 класс.Скачать

Момент инерции абсолютно твердого тела. 10 класс.

Величина I для цилиндра, ось вращения которого проходит параллельно плоскостям его основания

В такой системе ось вращения проходит также через центр массы цилиндра, но теперь он лежит как бы на боку (на цилиндрической поверхности, см. рис. ниже).

Расчет для момента инерции цилиндра для такой ситуации является непростой задачей, поскольку требует наличия дополнительных знаний для ее решения. Тем не менее приведем необходимые математические выкладки, чтобы читатели имели более полное представление о проведении интегрирования при вычислении I.

Вычислить радиус инерции сплошного однородного цилиндра

Начинаем решать задачу. Разбиваем сплошной цилиндр на отдельные диски бесконечно малой толщины. Чтобы узнать, каким моментом инерции обладает этот диск относительно оси, которая проходит через него и параллельна его основаниям, необходимо выполнить отдельное интегрирование. Оно дает следующий результат:

Чтобы найти, величину Ii для этого диска относительно уже новой оси, которая рассматривается в задаче, необходимо воспользоваться теоремой Штейнера. Получим:

Ii = R 2 *dm/4 + L 2 *dm, здесь L — расстояние от оси до тонкого диска.

Зная, что dm = pi*R 2 *dL*ρ, подставляем в интегральную формулу для I и проводим интегрирование по пределам (-L0/2; +L0/2), имеем:

I = ∫mIi = ∫m(R 2 *dm/4 + L 2 *dm) = pi*R 2 *ρ*∫ L0/2 -L0/2(R 2 *dL/4 + L 2 *dL)

Решение этого интеграла приводит к конечной формуле:

Видео:1.256Скачать

1.256

Пример решения задачи

Решим интересную задачу на нахождение осевого момента инерции цилиндра. Пусть он лежит на цилиндрической поверхности, а ось вращения расположена параллельно его основанию и проходит через конец фигуры.

Эта ситуация полностью аналогична рассмотренной в предыдущем пункте, только ось пересекает не гравитационный центр цилиндра, а конец этой фигуры. Тем не менее для решения проблемы можно воспользоваться результатом предыдущего пункта статьи. Применим вышеупомянутую теорему Штейнера, получим:

I = m*R 2 /4 + m*L0 2 /12 + m*(L0/2) 2 = m*R 2 /4 + m*L0 2 /3

Этот момент инерции соответствует стержню с осью вращения на его конце.

💡 Видео

Скатывание цилиндров с наклонной плоскостиСкачать

Скатывание цилиндров с наклонной плоскости

7. Момент инерции треугольника и конусаСкачать

7.  Момент инерции треугольника и конуса

Механика - Семинар 3 - Задача 2 - Иродов 1.292Скачать

Механика - Семинар 3 - Задача 2 - Иродов 1.292

Объем и момент инерции однородного шараСкачать

Объем и момент инерции однородного шара

Какой цилиндр скатится быстрее: сплошной или полый? Разбор задачи.Скачать

Какой цилиндр скатится быстрее: сплошной или полый? Разбор задачи.

Урок 98. Задачи на вычисление моментов инерции (ч.1)Скачать

Урок 98. Задачи на вычисление моментов инерции (ч.1)
Поделиться или сохранить к себе:
Технарь знаток