- Развертка усеченного цилиндра. Построение развертки цилиндра.
- Развертка усеченного цилиндра. Построение развертки цилиндра.
- Развертка верхней части цилиндра.
- Построение сечения цилиндра.
- Урок 7. Сечение цилиндра плоскостью. Развертка усеченного цилиндра
- Последовательность построения усеченного цилиндра
- Построение натурального вида сечения цилиндра
- Развертка усеченного цилиндра
- Построение изометрии цилиндра
- Выполнить чертеж усеченного цилиндра найти действительную величину контура фигуры сечения
- Построение развертки цилиндра. Развертка усеченного цилиндра. Формула развертки цилиндра.
- Построение развертки цилиндра. Развертка усеченного цилиндра. Формула развертки цилиндра.
- Развертка прямого кругового цилиндра.
- Развертка прямого кругового цилиндра из ленты. Расчет развертки цилиндра.
- Развертка усеченного цилиндра.
- 🎦 Видео
Видео:Как построить УСЕЧЕННУЮ ПРИЗМУ шестигранную и ДЕЙСТВИТЕЛЬНУЮ ВЕЛИЧИНУ сеченияСкачать
Развертка усеченного цилиндра. Построение развертки цилиндра.
Видео:Задание 38. Как построить УСЕЧЕННЫЙ ЦИЛИНДР. Построение НВ фигуры сечения. Часть 1Скачать
Развертка усеченного цилиндра. Построение развертки цилиндра.
Проекция цилиндра, срезанного плоскостью, наклонной к плоскости чертежа, по вертикальной плоскости проекции дает прямую линию, на горизонтальной — окружность, на профильной плоскости — замкнутую кривую, эллипс в искаженном виде.
Если представить себе цилиндр, срезанный плоскостью KS (рис. 1, а), параллельной основанию и проходящей через низшую точку наклонного среза 1, то нижняя часть такого цилиндра развернется в прямоугольник A1K1S1B1 (рис. 1, б) с высотой h = BS и основанием А1В1 = πD.
Рис. 1. Развертка усеченного цилиндра:
а — проекция; б — развертка.
Развертка верхней части цилиндра.
Чтобы получить развертку верхней части цилиндра выше плоскости KS, поступают следующим образом. Окружность основания делится на несколько равных частей, в приведенном примере на- восемь равных частей. Точки делений проектируют на вертикальную проекцию и проводят соответствующие образующие цилиндра 11 — 1′; 21 — 2″ и т. д. Затем делят длину развернутой окружности основания на такое же число равных частей, и из точек делений восстанавливают перпендикуляры, которые будут представлять собой те же образующие цилиндра, на которых затем нужно отложить их длины, измеряя одноименные отрезки на вертикальных проекциях (рис. 1, б). Соединив плавной кривой полученные точки, будем иметь развертку боковой поверхности усеченного цилиндра.
Для определения действительной формы поперечного сечения наклонной поверхности цилиндра вводят дополнительную плоскость проекции, параллельную плоскости сечения, на которой форма сечения спроектируется в искаженном виде — в форме эллипса.
Построение сечения цилиндра.
Для построения сечения на дополнительной плоскости проведем линию, параллельную проекции плоскости сечения, и, спроектировав на нее точки 1″ и 5″ с вертикальной проекции, получим большую ось эллипса. Затем из точки 7″ — 3″ на вертикальной проекции проведем линию, перпендикулярную большой оси эллипса, и, отложив на ней вправо и влево от большой оси отрезки 03″ и 07″, равные радиусу основания цилиндра, получим малую ось эллипса 3″ — 7″.
Положение остальных точек 2″, 4″, 6″, 8″ определяется так: на перпендикулярах к большей оси, проведенных из точек 8″ — 2″ и 6″ — 4″ вертикальной проекции, откладываем отрезки m от большей оси эллипса. Плавная кривая, проведенная через полученные восемь точек, будет эллипсом.
Построение эллипса на профильной проекции видно из рис. 1, а.
Для получения полной развертки поверхности цилиндра следует добавить поверхности наклонного сечения и нижнего основания цилиндра, как указано на рис. 1, б.
Читайте также: Как найти площядь цилиндра
Видео:Задание 38. Как начертить РАЗВЕРТКУ УСЕЧЕННОГО ЦИЛИНДРАСкачать
Урок 7. Сечение цилиндра плоскостью. Развертка усеченного цилиндра
Здравствуйте друзья! На этом уроке мы будем строить сечение цилиндра плоскостью и развертку усеченного цилиндра.
За основу возьмем модель цилиндра, построенного на втором уроке по 3d моделированию.
Видео:Построение усеченного цилиндра с сечением в натуральную величинуСкачать
Последовательность построения усеченного цилиндра
Пункты 1 — 4 аналогичны пунктам построения чертежа усеченной призмы .
5. От оси симметрии цилиндра откладываем расстояние до следа секущей плоскости – 32 мм, проводим след секущей плоскости Pv под углом 60º.
6. Обозначаем несколько точек пересечения поверхности цилиндра со следом плоскости. Находим их на проекциях цилиндра. Соединяем точки при помощи кривой Безье. Получаем искаженные фигуры сечений.
7. Построим натуральный вид сечения
Построение натурального вида сечения цилиндра
8, 9 Построение аналогично построению сечения призмы
Развертка усеченного цилиндра
10. Развертку цилиндра будем строить на одной линии с осями x и y1.
11. Откладываем отрезок длиной l=π*D=3,14*40=125,6 мм.
12. Делим этот отрезок на 12 равных частей, нумеруем.
13. Переносим высоты отрезков с фронтальной проекции цилиндра. Соединяем полученные вершины при помощи кривой Безье. Натуральный вид сечения переносим копированием и поворотом. Достраиваем нижнее основание цилиндра.
Построение изометрии цилиндра
14. Наглядное изображение цилиндра сделаем при помощи рисунка. Для этого необходимо пересечение плоскостью цилиндра (3d модели).
15. Открываем деталь, в дереве модели выбираем плоскость xy. Строим эскиз, показанный на рисунке.
16. На компактной панели выбираем команду «Сечение по эскизу» . Задаем направление отсечения – прямое. Пересечение цилиндра плоскостью готово.
17. Сохраняем деталь в формате рисунка и вставляем его в чертеж. Оформляем чертеж.
Для лучшего понимания материала советую посмотреть небольшое видео по теме.
Как видите, построение сечения цилиндра плоскостью и развертки усеченного цилиндра, не такая уж и сложная задача вообще, а в Компасе построение идет гораздо проще.
Видео:усеченный цилиндр-ортогональные проекции-изометрия-разверткаСкачать
Выполнить чертеж усеченного цилиндра найти действительную величину контура фигуры сечения
Контрольные задания по теме:
Рабочая тетрадь задача 68, задача 69
Цилиндром будет называться геометрическое тело, полученное при ограничении цилиндрической поверхности двумя параллельными плоскостями — основаниями цилиндра. Если в основании цилиндра лежит окружность, а образующая перпендикулярна основанию, то цилиндр называется прямым круговым.
Линия сечения строится также при помощи опорных точек — точек пересечения секущей плоскости с очерковыми образующими и осью цилиндра. Но необходимо взять также промежуточные точки для более точного построения линии сечения. На рисунке 49 показано построение проекций сечения цилиндра фронтально — проецирующей плоскостью S. Так как цилиндр является проецирующей поверхностью, то горизонтальная проекция сечения совпадает с секущей плоскостью и на профильной проекции получим эллипс. Точки 2 и 3 будут являться границей видимости линии сечения для профильной плоскости.
Натуральную величину сечения можно определить способом вращения. Ось вращения выбираем в точке 1 и вращаем секущую плоскость до положения, параллельного горизонтальной плоскости. На горизонтальной плоскости получим эллипс, который будет являться натуральной величиной сечения цилиндра.
Разверткой цилиндра является прямоугольник с высотой, равной высоте цилиндра, и длиной, равной длине окружности основания 2πR. Для того, чтобы построить развертку усеченной части, основание цилиндра делят на равные части, тем самым аппроксимируя цилиндрическую поверхность призматической. Разделим окружность основания на 12 равных частей и отложим их вдоль горизонтальной линии развертки, по вертикали отложим высоту цилиндра (рис. 50).
Читайте также: Порядок работы цилиндров опель корса
Затем на полученных образующих отметим высоты точек сечения. Пристроим окружность основания и натуральную величину сечения.
Конус — это геометрическое тело, полученное путем ограничения конической поверхности плоскостью. Если в основании конуса лежит окружность, а высота попадает в центр основания, то конус называется прямым круговым.
На рисунке 51 построено сечение конуса фронтально — проецирующей плоскостью. Точки сечения находим при помощи вспомогательных секущих плоскостей. Точки С и D являются границей видимости для профильной проекции сечения.
Натуральную величину сечения находим способом вращения. Ось вращения выбираем в точке D и поворачиваем секущую плоскость до положения, параллельного горизонтальной плоскости проекций. Из горизонтальных проекций точек проводим линии, перпендикулярные оси вращения. Натуральной величиной сечения будет являться эллипс.
Развертка конуса является круговым сектором с радиусом, равным длине образующей конуса и длиной дуги, равной длине окружности основания конуса. Делим основание конуса на 12 равных частей и откладываем их по дуге на развертке. Затем на соответствующих образующих нужно отложить натуральные величины высот точек сечения. Чтобы получить полную развертку усеченной части, пристраиваем основание и натуральную величину сечения. На рисунке 52 показано построение развертки конуса.
1. Как образуется цилиндрическая поверхность?
2. Если секущая цилиндр плоскость фронтально проецирующая, то где будут лежать горизонтальные проекции точек сечения?
3. Какими способами можно определять натуральную величину фигуры сечения?
4. Какой геометрической фигурой является развертка боковой поверхности цилиндра? Конуса?
5. Для чего нужно разбивать окружность основания на некоторое количество равных частей?
6. Как построить развертку конической поверхности?
7. Как получить из полной развертки поверхности развертку ее усеченной части?
© ФГБОУ ВПО Красноярский государственный аграрный университет
Видео:Задание 42. УСЕЧЕННЫЙ КОНУС. Часть 1Скачать
Построение развертки цилиндра. Развертка усеченного цилиндра. Формула развертки цилиндра.
Видео:Усеченный цилиндр: проекции сечения, изометрия, развертка поверхностиСкачать
Построение развертки цилиндра. Развертка усеченного цилиндра. Формула развертки цилиндра.
Развертка прямого кругового цилиндра.
Цилиндр диаметром D и высотой H показан на рис. 1. Развертка представляет собой прямоугольник длиной с = πD и высотой Н.
Прямой круговой цилиндр, усеченный плоскостью, параллельной его оси, показан на рис. 2. Развертка представляет собой прямоугольник высотой Н и длиной L = b + k, где b = πDᵠ/360° и k = 2 √((D/2) 2 – a 2 ) = 2a tg (ᵠ/2).
Развертка прямого кругового цилиндра из ленты. Расчет развертки цилиндра.
Цилиндр показан на рис. 3. При определении развертки можно использовать следующие зависимости:
n — число полных витков на общей длине цилиндра H, Н = nt;
Развертка усеченного цилиндра.
Для получения развертки горизонтальная проекция цилиндра делится на равные части и точки деления нумеруются (в данном случае от 0 до 12). Из точек деления проводятся вертикали до пересечения верхнего основания в точках 0′1, 1′1…, 6′1. На продолжении прямой 0’6′ откладывается отрезок длиной с = πD, который делится на принятое число равных частей. Из точек деления 00, 10, …, 60 строятся перпендикуляры до их пересечения с соответствующими горизонтальными линиями в точках 0 0 1, 1 0 1, …, 6 0 1. Полученные точки соединяются плавной кривой. Ввиду симметричности остальные точки кривой находит аналогичным путем.
Читайте также: Охлаждающая жидкость в цилиндре дизеля
Линию развертки можно определить и таким способом. На расстоянии h1 = (h + H)/2 от линии 0 0 12 0 проводится параллельная прямая. Из центра S, лежащего на прямой, описывается полуокружность радиусом А. Полуокружность делится на равные части, число которых равно половине точек деления развертки (в данном случае на шесть). Через точки деления 0ꞋꞋ, 1ꞋꞋ, …, 6ꞋꞋ проводятся горизонтальные прямые до пересечения вертикалей, проходящих через 0 0 , 1 0 , … , 12 0 . Полученные точки 0 0 1, 1 0 1, …, 12 0 1 соединяются плавной кривой.
Верхнее основание цилиндра представляет собой эллипс с полуосями a = D/2 cos α = 0′13′1 и b = D/2.
При аналитическом определении координат точек кривой развертки цилиндра, усеченного плоскостью под углом α (рис. 5), могут быть использованы следующие зависимости:
xk = kx1 = πD/2 kε/180°; yk = D/2 tg α sin kε = A sin kε = A sin ᵠi,
где х1 = πD/ (2n) = πD/2 ε/180° — длина дуги окружности основания цилиндра, разделенная на 2n равных частей; ε = 360°/2n — центральный угол, соответствующий одному делению; k — порядковый номер точки; A = (H — h)/2 = (D/2) tg α — амплитуда синусоиды; ᵠi= kε.
Значения sin kε для наиболее часто употребляемых значений 2n приведены в табл. 1.
Таблица 1. Значения sin kε и sin 2 kε
2n | sin kε | sin 2 kε | 2n | sin kε | sin 2 kε | ||||||
8 | 16 | 32 | 64 | 12 | 24 | 48 | 96 | ||||
— | — | — | 1 | 0,09802 | 0,00961 | — | — | — | 1 | 0,06540 | 0,00428 |
— | — | 1 | 2 | 0,19509 | 0,03806 | — | — | 1 | 2 | 0,13053 | 0,01704 |
— | — | — | 3 | 0,29028 | 0,08426 | — | — | — | 3 | 0,19509 | 0,03806 |
— | 1 | 2 | 4 | 0,38268 | 0,14645 | — | 1 | 2 | 4 | 0,25882 | 0,06699 |
— | — | — | 5 | 0,47139 | 0,22221 | — | — | — | 5 | 0,32144 | 0,10332 |
— | — | 3 | 6 | 0,55557 | 0,30866 | — | — | 3 | 6 | 0,38268 | 0,14645 |
— | — | — | 7 | 0,63439 | 0,40245 | — | — | — | 7 | 0,44229 | 0,19562 |
1 | 2 | 4 | 8 | 0,70711 | 0,50000 | 1 | 2 | 4 | 8 | 0,50000 | 0,25000 |
— | — | — | 9 | 0,77301 | 0,59754 | — | — | — | 9 | 0,55557 | 0,30866 |
— | — | 5 | 10 | 0,83147 | 0,69134 | — | — | 5 | 10 | 0,60876 | 0,37059 |
— | — | — | 11 | 0,88192 | 0,77778 | — | — | — | 11 | 0,65935 | 0,43474 |
— | 3 | 6 | 12 | 0,92388 | 0,85355 | — | 3 | 6 | 12 | 0,70711 | 0,50000 |
— | — | — | 13 | 0,95694 | 0,91573 | — | — | — | 13 | 0,75184 | 0,56526 |
— | — | 7 | 14 | 0,98079 | 0,96194 | — | — | 7 | 14 | 0,79335 | 0,62941 |
— | — | — | 15 | 0,99518 | 0,99039 | — | — | — | 15 | 0,83147 | 0,69134 |
2 | 4 | 8 | 16 | 1,00000 | 1,00000 | 2 | 4 | 8 | 16 | 0,86617 | 0,75000 |
— | — | — | 17 | 0,89687 | 0,80438 | ||||||
— | — | 9 | 18 | 0,92388 | 0,85355 | ||||||
— | — | — | 19 | 0,94693 | 0,89668 | ||||||
— | 5 | 10 | 20 | 0,96600 | 0,93301 | ||||||
— | — | — | 21 | 0,98079 | 0,96194 | ||||||
— | — | 11 | 22 | 0,99144 | 0,98296 | ||||||
— | — | — | 23 | 0,99786 | 0,99572 | ||||||
3 | 6 | 12 | 24 | 1,00000 | 1,00000 |
Примечание: Значения sin kε и sin 2 kε даны для одной четверти окружности. В остальных четвертях они повторяются.
Ввиду симметричности синусоиды достаточно определить координаты точек одной четверти окружности, например от у0 до у3. Остальные координаты имеют соответственно равные значения. Например: у4 — у2, …, у11 = — у1 и т. д.
🎦 Видео
Развертка усеченного цилиндраСкачать
Задание 38. Как начертить ИЗОМЕТРИЮ усеченного цилиндраСкачать
2 6 1 сечение конуса плоскостьюСкачать
2_Натуральная величина сеченияСкачать
Как начертить УСЕЧЕННУЮ ПРИЗМУ В ОБЪЕМЕ и ее РАЗВЕРТКУСкачать
Натуральная величина усеченного конусаСкачать
Усеченный конус: проекции сечения, изометрия и развертка поверхностиСкачать
Урок #13│Сечение геометрического тела плоскостью│ ПризмаСкачать
Как начертить КОНУС С ВЫРЕЗОМ (чертеж + аксонометрия)Скачать
Урок #5│Натуральная величина фигуры сечения. Начертательная геометрияСкачать
Линия пересечения двух поверхностей конус и цилиндр (Метод секущих плоскостей)Скачать
Развертка цилиндраСкачать
Построение изометрии усеченного цилиндра │Урок #60Скачать