Выполните чертежи развертки цилиндра конуса

Авто помощник

Поверхность цилиндра состоит из двух равных кругов радиуса R и прямоугольника, ширина которого равна высоте цилиндра, длина вычисляется по формуле С=2пR , где п=3,14. Изображение цилиндра и его развертка на рисунках:

Выполните чертежи развертки цилиндра конуса

Выполните чертежи развертки цилиндра конуса

Поверхность конуса состоит круга радиуса R и сегмента круга радиуса OA. Дуга АВ=2пR. Изображение конуса и его разверток показаны на рисунках:

Выполните чертежи развертки цилиндра конуса

а) Когда угол прямой имеем четверть круга. Чтобы дуга АВ=2пR, надо чтобы АО=4R

б) Когда угол развернутый имеем половину круга. Чтобы дуга АВ=2пR, надо чтобы АО=2R

в) Когда угол 120 градусов имеем треть круга. Чтобы дуга AB=2пR, надо чтобы АО=3R

Выполните чертежи развертки цилиндра конуса

Выполните чертежи развертки цилиндра конуса

Выполните чертежи развертки цилиндра конуса

Развертка «Усеченный конус»

Поверхность усеченного конуса состоит двух кругов радиуса R1 , R2 и сегмента круга радиуса OA. Дуга AB=2пR. Изображение усеченного конуса и его разверток показаны на рисунках:

Выполните чертежи развертки цилиндра конуса

а) Когда угол прямой имеем четверть круга. Чтобы дуга AA1=2пR1, и дуга BB1=2пR надо чтобы А1О=4R1, В1О=4R2

б) Когда угол развернутый имеем половину круга. Чтобы дуга AA1=2пR1, и дуга BB1=2пR надо чтобы А1О=2R1, В1О=2R2

в) Когда угол 120 градусов имеем треть круга. Чтобы дуга AA1=2пR1, и дуга BB1=2пR надо чтобы А1О=3R1, В1О=3R2

Видео:Построение развертки цилиндра. Урок 37.(Часть2.ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)Скачать

Построение развертки цилиндра. Урок 37.(Часть2.ПРОЕКЦИОННОЕ ЧЕРЧЕНИЕ)

Построение развертки конуса

Развертка поверхности конуса — это плоская фигура, полученная путем совмещения боковой поверхности и основания конуса с некоторой плоскостью.

Варианты построения развертки:

Видео:развертка конусаСкачать

развертка конуса

Развертка прямого кругового конуса

Развертка боковой поверхности прямого кругового конуса представляет собой круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол φ определяется по формуле φ=360*R/l, где R – радиус окружности основания конуса.

Выполните чертежи развертки цилиндра конуса

В ряде задач начертательной геометрии предпочтительным решением является аппроксимация (замена) конуса вписанной в него пирамидой и построение приближенной развертки, на которую удобно наносить линии, лежащие на конической поверхности.

  1. Вписываем в коническую поверхность многоугольную пирамиду. Чем больше боковых граней у вписанной пирамиды, тем точнее соответствие между действительной и приближенной разверткой.
  2. Строим развертку боковой поверхности пирамиды способом треугольников. Точки, принадлежащие основанию конуса, соединяем плавной кривой.

На рисунке ниже в прямой круговой конус вписана правильная шестиугольная пирамида SABCDEF, и приближенная развертка его боковой поверхности состоит из шести равнобедренных треугольников – граней пирамиды.

Выполните чертежи развертки цилиндра конуса

Рассмотрим треугольник S0A0B0. Длины его сторон S0A0 и S0B0 равны образующей l конической поверхности. Величина A0B0 соответствует длине A’B’. Для построения треугольника S0A0B0 в произвольном месте чертежа откладываем отрезок S0A0=l, после чего из точек S0 и A0 проводим окружности радиусом S0B0=l и A0B0= A’B’ соответственно. Соединяем точку пересечения окружностей B0 с точками A0 и S0.

Точки A, B, C, D, E и F, лежащие в основании конуса, соединяем плавной кривой – дугой окружности, радиус которой равен l.

Видео:Задание 38. Как начертить РАЗВЕРТКУ УСЕЧЕННОГО ЦИЛИНДРАСкачать

Задание 38. Как начертить РАЗВЕРТКУ УСЕЧЕННОГО ЦИЛИНДРА

Развертка наклонного конуса

Рассмотрим порядок построения развертки боковой поверхности наклонного конуса методом аппроксимации (приближения).

Читайте также: Главный цилиндр сцепления toyota town ace

Выполните чертежи развертки цилиндра конуса

  1. Вписываем в окружность основания конуса шестиугольник 123456. Соединяем точки 1, 2, 3, 4, 5 и 6 с вершиной S. Пирамида S123456, построенная таким образом, с некоторой степенью приближения является заменой конической поверхности и используется в этом качестве в дальнейших построениях.
  2. Определяем натуральные величины ребер пирамиды, используя способ вращения вокруг проецирующей прямой: в примере используется ось i, перпендикулярная горизонтальной плоскости проекций и проходящая через вершину S.
    Так, в результате вращения ребра S5 его новая горизонтальная проекция S’5’1 занимает положение, при котором она параллельна фронтальной плоскости π2. Соответственно, S’’5’’1 – натуральная величина S5.
  3. Строим развертку боковой поверхности пирамиды S123456, состоящую из шести треугольников: S01060, S06050, S05040, S04030, S03020, S02010. Построение каждого треугольника выполняется по трем сторонам. Например, у △S01060 длина S010=S’’1’’0, S060=S’’6’’1, 1060=1’6’.

Степень соответствия приближенной развертки действительной зависит от количества граней вписанной пирамиды. Число граней выбирают, исходя из удобства чтения чертежа, требований к его точности, наличия характерных точек и линий, которые нужно перенести на развертку.

Перенос линии с поверхности конуса на развертку

Линия n, лежащая на поверхности конуса, образована в результате его пересечения с некоторой плоскостью (рисунок ниже). Рассмотрим алгоритм построения линии n на развертке.

Выполните чертежи развертки цилиндра конуса

  1. Находим проекции точек A, B и C, в которых линия n пересекает ребра вписанной в конус пирамиды S123456.
  2. Определяем натуральную величину отрезков SA, SB, SC способом вращения вокруг проецирующей прямой. В рассматриваемом примере SA=S’’A’’, SB=S’’B’’1, SC=S’’C’’1.
  3. Находим положение точек A0, B0, C0 на соответствующих им ребрах пирамиды, откладывая на развертке отрезки S0A0=S’’A’’, S0B0=S’’B’’1, S0C0=S’’C’’1.
  4. Соединяем точки A0, B0, C0 плавной линией.

Видео:Усеченный цилиндр: проекции сечения, изометрия, развертка поверхностиСкачать

Усеченный цилиндр: проекции сечения, изометрия, развертка поверхности

Развертка усеченного конуса

Описываемый ниже способ построения развертки прямого кругового усеченного конуса основан на принципе подобия.

Видео:Как начертить КОНУС С ВЫРЕЗОМ (чертеж + аксонометрия)Скачать

Как начертить КОНУС С ВЫРЕЗОМ (чертеж + аксонометрия)

§ 16. Чертежи разверток поверхностей геометрических тел

16.1. Чертежи разверток поверхностей призм и цилиндров.

Для изготовления ограждений станков, вентиляционных труб и некоторых других изделий вырезают из листового материала их развертки.

Развертка поверхностей любой прямой призмы представляет собой плоскую фигуру, составленную из боковых граней — прямоугольников и двух оснований — многоугольников.

Например, у развертки поверхностей шестиугольной призмы (рис. 139, б) все грани — равные между собой прямоугольники шириной а и высотой h, а основания — правильные шестиугольники со стороной, равной а.

Рис. 139. Построение чертежа развертки поверхностей призмы: а — два вида; б — развертка поверхностей

Таким образом, можно построить чертеж развертки поверхностей любой призмы.

Развертка поверхностей цилиндра состоит из прямоугольника и двух кругов (рис. 140, б). Одна сторона прямоугольника равна высоте цилиндра, другая — длине окружности основания. На чертеже развертки к прямоугольнику пристраивают два круга, диаметр которых равен диаметру оснований цилиндра.

Рис. 140. Построение чертежа развертки поверхностей цилиндра: а — два вида; б — развертка поверхностей

16.2. Чертежи разверток поверхностей конуса и пирамиды.

Развертка поверхностей конуса представляет собой плоскую фигуру, состоящую из сектора — развертки боковой поверхности и круга — основания конуса (рис. 141, 6).

Рис. 141. Построение чертежа развертки поверхностей конуса: а — два вида; б — развертка поверхностей

Читайте также: После замены рабочего цилиндра сцепления плохо включаются передачи

Построения выполняются так:

    Проводят осевую линию и из точки s’ на ней описывают радиусом, равным длине s’a’ образующей конуса, дугу окружности. На ней откладывают длину окружности основания конуса.

Длину окружности при построении сектора можно определить по формуле C = 3.14xD.

Угол а подсчитывают по формуле а = 360°хD/2L, где D — диаметр окружности основания, L —длина образующей конуса, ее можно подсчитать по теореме Пифагора.

Рис. 142. Построение чертежа развертки поверхностей пирамиды: а — два вида; б — развертка поверхностей

Чертеж развертки поверхностей пирамиды строят так (рис. 142, б):
Из произвольной точки О описывают дугу радиуса L, равного длине бокового ребра пирамиды. На этой дуге откладывают четыре отрезка, равные стороне основания. Крайние точки соединяют прямыми с точкой О. Затем пристраивают квадрат, равный основанию пирамиды.

Обратите внимание, как оформляют чертежи разверток. Над изображением выносят специальный знак. От линий сгиба, которые проводят штрихпунктирнои с двумя точками, проводят линии-выноски и пишут на полке «Линии сгиба».

  1. Как построить чертеж развертки поверхностей цилиндра?
  2. Какие надписи наносят на чертежах разверток поверхностей предметов?

Видео:Построение развертки конусаСкачать

Построение развертки конуса

Выполните чертежи развертки цилиндра конуса

Выполните чертежи развертки цилиндра конуса

Выполните чертежи развертки цилиндра конуса

Выполните чертежи развертки цилиндра конуса Выполните чертежи развертки цилиндра конуса

Видео:усеченный цилиндр-ортогональные проекции-изометрия-разверткаСкачать

усеченный цилиндр-ортогональные проекции-изометрия-развертка

Пошаговое решение задачи №9 — построение развертки конуса и цилиндра (Фролов / Бубенников)

Необходимо построить развертку поверхностей и перенести линию пересечения поверхностей на развертку. В основе данной задачи рассматриваются поверхности (конуса и цилиндра) с их линией пересечения, приведенные в предыдущей задаче 8.

Для решения таких задач по начертательной геометрии необходимо знать:

— порядок и методы построения разверток поверхностей;

— взаимное соответствие между поверхностью и ее разверткой;

— частные случаи построения разверток.

Порядок решения задачи

1. Отметим, что разверткой называется фигура, получаемая в
результате разреза поверхности по какой-либо образующей и постепенного разгибания ее до полного совмещения с плоскостью. Отсюда развертка, прямого кругового конуса — сектор с радиусом, равным длине образующей, и основанием, равным длине окружности основания конуса. Все развертки строятся только из натуральных величин.

Выполните чертежи развертки цилиндра конуса

— длину окружности основания конуса, выраженную в натуральной величине делим на ряд долей: в нашем случае — 10, от количества долей зависит точность построения развертки (рис.9.1.а);

— откладываем полученные доли, заменяя их хордами, на длине
дуги, проведенной радиусом, равным длине образующей конуса l=|Sb|. Начало и конец отсчета долей соединяем с вершиной сектора — это и будет развертка боковой поверхности конуса.

Второй способ:

— строим сектор с радиусом, равным длине образующей конуса.
Заметим, что как в первом, так и во втором случае за радиус берется крайняя правая или левая образующие конуса l=|Sb|, т.к. они выражены в натуральной величине;

— при вершине сектора откладываем угол а, определяемый по формуле:

Выполните чертежи развертки цилиндра конуса

где r — величина радиуса основания конуса;

l — длина образующей конуса;

360 — постоянная переводная в градусы величина.

Читайте также: Замена пыльника заднего тормозного цилиндра лачетти

К сектору-развертке строим основание конуса радиуса r.

2. По условиям задачи требуется перенести линию пересечения
поверхностей конуса и цилиндра на развертку. Для этого используем свойства взаимной однозначности между поверхностью и ее разверткой, в частности, отметим, что каждой точке на поверхности соответствует точка на развертке и каждой линии на поверхности соответствует линия на развертке.

Отсюда вытекает последовательность перенесения точек и линий
с поверхности на развертку.

Выполните чертежи развертки цилиндра конуса

Для развертки конуса. Условимся, что разрез поверхности конуса произведен по образующей Sa. Тогда точки 1, 2, 3,…6
будут лежать на окружностях (дугах на развертке) с радиусами соответственно равными величинам расстояний, взятым по образующей SA от вершины S до соответствующей секущей плоскости с точками 1’, 2’, 3’…6’ -|S1|, |S2|, |S3|….|S6| (рис.9.1.б).

Положение точек на этих дугах определяется расстоянием, взятым с горизонтальной проекции от образующей Sa, по хорде до соответствующей точки, например до точки с, ас=35 мм (рис.9.1.а). Если расстояние по хорде и дуге сильно разнятся, то для уменьшения погрешности можно разделить большее количество долей и отложить их на соответствующие дуги развертки. Таким способом переносятся любые точки с поверхности на ее развертку. Полученные точки соединятся плавной кривой по лекалу (рис.9.3).

Для развертки цилиндра.

Развертка цилиндра есть прямоугольник с высотой, равной высоте образующей, и длиной, равной длине окружности основания цилиндра. Таким образом, для построения развертки прямого кругового цилиндра необходимо построить прямоугольник с высотой, равной высоте цилиндра, в нашем случае 100мм, и длиной, равной длине окружности основания цилиндра, определенной по известным формулам: C=2R=220мм, или делением окружности основания на ряд долей, как было указано выше. К верхней и нижней части полученной развертки пристраиваем основание цилиндра.

Условимся, что разрез произведен по образующей AA1 (AA1; AA1). Заметим, что разрез следует производить по характерным (опорным) точкам для более удобного построения. Учитывая, что длина развертки есть длина окружности основания цилиндра C, от точки A’=A1 разреза фронтальной проекции берем расстояние по хорде (если расстояние большое, то необходимо его разделить на доли) до точки B (в нашем примере — 17мм) и откладываем его на развертке (по длине основания цилиндра) от точки А. Из полученной точки В проводим перпендикуляр (образующую цилиндра). Точка 1 должна находиться на этом перпендикуляре) на расстоянии от основания, взятого с горизонтальной проекции до точки. В нашем случае точка 1 лежит на оси симметрии развертки на расстоянии 100/2=50мм (рис.9.4).

Выполните чертежи развертки цилиндра конуса

И так поступаем для нахождения на развертке всех других точек.

Подчеркнем, что расстояние по длине развертки для определения положения точек берется с фронтальной проекции, а расстояние по высоте — с горизонтальной, что соответствует их натуральным величинам. Полученные точки соединяем плавной кривой по лекалу (рис.9.4).

В вариантах задач, когда линия пересечения распадается на несколько ветвей, что соответствует полному пересечению поверхностей, способы построения (перенесения) линии пересечения на развертку аналогичны, описанным выше.

🎦 Видео

Развертка цилиндраСкачать

Развертка цилиндра

Простой расчёт развёртки конусаСкачать

Простой расчёт развёртки конуса

Построение развёртки усечённого цилиндра.Скачать

Построение развёртки усечённого цилиндра.

Задание 42. УСЕЧЕННЫЙ КОНУС. Часть 1Скачать

Задание 42. УСЕЧЕННЫЙ КОНУС. Часть 1

Как начертить развёртку поверхностей цилиндра #чертёж #развёртка #цилиндрСкачать

Как начертить развёртку поверхностей цилиндра #чертёж #развёртка #цилиндр

Построение разверток пересекающихся цилиндра и конуса. Развертка конуса. Анимация.Скачать

Построение разверток пересекающихся цилиндра и конуса. Развертка конуса. Анимация.

Как сделать ИДЕАЛЬНЫЙ цилиндр из бумагиСкачать

Как сделать ИДЕАЛЬНЫЙ цилиндр из бумаги

Развёртывание конусаСкачать

Развёртывание конуса

[Начертательная геометрия] Как построить развертку конусаСкачать

[Начертательная геометрия] Как построить развертку конуса

Усеченный конус: проекции сечения, изометрия и развертка поверхностиСкачать

Усеченный конус: проекции сечения, изометрия и развертка поверхности

Задание 42. УСЕЧЕННЫЙ КОНУС. Часть 2Скачать

Задание 42. УСЕЧЕННЫЙ КОНУС. Часть 2

Построение проекций точек на поверхности конуса #черчение #проекции #конус #преподавательСкачать

Построение проекций точек на поверхности конуса #черчение #проекции #конус #преподаватель

Уроки Solidworks.Развёртка усечённого конусаСкачать

Уроки Solidworks.Развёртка усечённого конуса
Поделиться или сохранить к себе:
Технарь знаток