И что бы далее понимать друг друга, давайте определимся с некоторыми понятиями, терминами и определениями.
Работа двигателя складывается из совокупности процессов, протекающих в цилиндрах двигателя с определённой последовательностью. Эти процессы называют рабочим циклом. Рабочий цикл четырёхтактного двигателя осуществляется за два оборота коленчатого вала и состоит из тактов впуска, сжатия, рабочего хода (расширения) и выпуска.
Поршень, движущийся в цилиндре, проходит расстояние равное расстоянию между верхней и нижней мёртвыми точками.
Это расстояние называется ходом поршня . Двигатели, у которых ход поршня меньше его диаметра, носят название «короткоходных». За один ход поршня кривошип коленчатого вала проходит расстояние равное двум его радиусам, т.е. совершает полуоборот (180°)
Объем цилиндра , заключённый между крайними положениями поршня в цилиндре (между мёртвыми точками) называют рабочим объёмом цилиндра (Vр). Сумма рабочих объёмов всех цилиндров двигателя, равняется рабочему объёму двигателя, называемому иначе как «литражом двигателя».
Сумма рабочего объёма цилиндра (Vр) и объёма камеры сгорания (Vксг) равняется полному объёму (Vп).
Литраж двигателя (рабочий объём) указывается в технической характеристике автомобиля.
Чем больше литраж двигателя, тем выше его мощность и удельный расход топлива.
Камерой сгорания называют объём цилиндра над поршнем, при положении поршня в верхней мёртвой точке. Топливно-воздушная смесь в цилиндре сжимается поршнем как раз до этого объёма и сгорает в этом объёме после воспламенения. Отношение объёма смеси, поступившей в цилиндр на такте впуска, к объёму смеси, сжатой до объёма камеры сгорания при такте сжатия, называют степенью сжатия двигателя. Степень сжатия показывает, во сколько раз в цилиндре сжимается смесь и определяется по формуле n = Vп/Vксг.
Степень сжатия бензиновых двигателей лежит в пределах 8 – 12, дизельных – в среднем 18 – 22. От степени сжатия зависит топливная экономичность и мощностные характеристики двигателя. Степени сжатия двигателей ограничиваются, у бензиновых двигателей – свойством применяемого топлива (бензина), у дизельных – конструктивными особенностями применяемых материалов, из которых изготавливаются детали двигателя и которые с повышением степени сжатия должны выдерживать большие нагрузки. Свойства бензинов описываются октановым числом бензина, характеризующим его антидетонационную стойкость. Антидетонационная стойкость топлива тем выше, чем больше его октановое число (А –80, 93, 95, 98 и др.). Конструкция двигателя предполагает применение бензина со строго заданным октановым числом (регламентируется заводом изготовителем). Применение бензина с меньшим октановым числом приведёт к работе двигателя с детонацией и, как следствие, к преждевременному износу, или поломке двигателя. Высокооктановые бензины при сгорании выделяют больше тепла.
Детонационное сгорание рабочей смеси (детонация) предполагает нехарактерно быстрое сгорание (взрыв) топливно-воздушной смеси в цилиндре двигателя, приводящее к повышению нагрузок, в первую очередь на детали цилиндропоршневой группы. Скорость распространения фронта пламени, сгорающего в цилиндре топлива, может возрастать с 40 м/сек. до 2000 м/сек. и более. Признаком работы двигателя с детонацией являются характерные и хорошо прослушиваемые стуки, получившие название детонационных стуков. Детонационные стуки возникают вследствие вибрации стенок цилиндра и других деталей ЦПГ под воздействием «ударной волны». Причиной детонации может быть:
применение топлива с октановым числом ниже рекомендованного инструкцией производителя перегрев двигателя , перегрузка двигателя по оборотам или крутящему моменту чрезмерно раннее зажигание, а также та или иная совокупность перечисленных явлений.
Работа двигателя с детонацией может сопровождаться перегревом двигателя, падением его мощности и высоким расходом топлива.
Следствием работы двигателя с детонацией могут быть поломки перемычек между кольцами на поршнях, поломки самих колец, оплавление кромки и/или прогорание днища поршня.
Читайте также: Компрессия в цилиндрах skoda octavia
Калильное зажигание — самопроизвольное и несвоевременное воспламенения смеси от сильно нагретых деталей двигателя (юбки свечи, кромки поршня, кромки клапана, тлеющего нагара и т.п.).
Причиной появления калильного зажигания может быть: повышенное нагароотложение на днищах поршней несоответствие свечей зажигания данному типу двигателя
На работающем двигателе, при движении поршня к нижней мёртвой точке силы, действующие на поршень, прижимают его к правой стенке цилиндра, а при движении к верхней мёртвой точке, к левой. При переходе поршня через мёртвые точки происходит изменение опоры поршня (перекладка поршня) с одной стенки цилиндра на другую.
Изменение направления действия сил в цилиндре приводит к неравномерному износу цилиндр а (под овал и под конус с образованием износного уступа в верхней части цилиндра).
Давление, создаваемое поршнем в цилиндре в конце такта сжатия называется компрессией .
Величина компрессии зависит от: степени сжатия двигателя состояния деталей цилиндропоршневой группы и клапанов.
Измеряя компрессию в цилиндрах двигателя, мы только косвенно можем судить о степени изношенности соответствующих деталей или об их неисправности.
Это моменты открытия и закрытия клапанов, выраженные в углах поворота коленчатого вала относительно мёртвых точек.
Как видите, существует достаточно много нюансов, из-за которых может происходить износ ЦПГ и снижаться свойства работы камеры сгорания и, значит, свойства двигателя в целом.
Он перестает «работать нормально», как обычно говорят.
О способах проверки износа ЦПГ говорилось уже много, но это не значит, что сказано уже всё и говорить больше не о чем.
Например, о «степени сжатия».
Одни говорят, другие повторяют, что «степень сжатия двигателя не меняется на протяжении всей эксплуатации двигателя».
Неправильно . Меняется. Пусть по-разному, больше или меньше, но меняется.
Например, от величины нагара в камере сгорания и на клапанах.
И после пробега автомобиля в сто или двести тысяч километров, после эксплуатации и обслуживании автомобиля «по-русски», степень сжатия будет отличаться от той, которая была вначале, когда автомобиль сошел с конвейера.
И если уж мы заговорили о нагаре, то надо обязательно упомянуть о другой его отрицательной стороне – уменьшении теплоотвода в стенки.
По этой причине температура топливо-воздушной смеси и давление в конце такта сжатия повышается, что может провоцировать возникновение детонации.
Косвенно наличие нагара в камере сгорания можно определить при помощи т.н. «калильного теста».
Это когда отключаем катушку зажигания (и не забываем про обязательные условия безопасного отключения) и запускаем двигатель.
Если завелся или сделал попытки завестись, то можно предположить о наличии нагара в камере сгорания.
Более точную проверку по нагару можно провести при помощи автомобильного эндоскопа, например, такого: http://www.autodata.ru/autodata.ru/endoscope.pdf. Или других, коих существует великое множество.
На этом рынке приборов цена = качеству и возможностям устройства.
Состояние цилиндро-поршневой группы обычно проверяют при помощи компрессометра.
Однако эта проверка является весьма относительной, так как на её показания влияют разного рода причины, например:
— насколько сильно она может «раскрутить» двигатель при проведении теста
— разряженная или «полумертвая» батарея не даст возможность провести тест правильно
Невозможность установления точной причины пониженной или увеличенной компрессии: если компрессию измерить на холодном и горячем двигателе, то её величина будет разной. На «холодном» двигателе – меньше, на «горячем» больше. И причина здесь не только в величине сжатия холодного или горячего воздуха поступающего в цилиндры, а и в клапанах, имеющих разный коэффициент расширения при разных температурах.
Состояние дроссельной заслонки: при открытой или закрытой показания будут разными.
Состояние «обратного» клапана самого компрессометра: если он «пропускает», то показания будут неверными.
Нельзя провести тест, если стартер неисправен или двигатель снят с автомобиля для ремонта.
Нельзя определить состояние деталей группы поршня: поршень, поршневые кольца (компрессионные и масляные), стопорные кольца и заглушки. Эти детали определяют герметичность рабочей полости.
Читайте также: Восстановление поверхности блока цилиндров напылением
Кроме того, неточные показания компрессометра могут быть вызваны не только износом гильз цилиндров, поршней, компрессионных колец, но и другими причинами:
нарушение тепловых зазоров в клапанном механизме износ направляющих втулок клапанов
прогорание клапана или поршня негерметичность впускных и выпускных клапанов дефекты прокладки ГБЦ закоксовывание поршневых колец или их физическое разрушение
И не стоит забывать, что при проведении теста при помощи компрессометра, надо опираться не на «количественные» показания прибора ( цифры на шкале ), а обращать внимание на разность показаний между цилиндрами и выводы делать только из этих данных.
Что бы избежать таких погрешностей измерения и более точно определить состояние цилиндро-поршневой группы, применяется пневмотестер – « индикатор утечек в надпоршневом пространстве » .
Надо сразу отметить, что пневмотестер не заменяет компрессометр , это совершенно другой прибор с другими целями и задачами.
Устройство и принцип работы замечательно простой:
два манометра соединенных между собой через каллибровочное отверстие (стрелка на фото вверху) регулятор давления на входе соединительные шланги
При проведении измерений надо обращать внимание на инструкцию в прибору: каждый производитель делает свое каллибровочное отверстие и полученные данные необходимо интерпретировать через инструкцию к устройству.
прогреваем двигатель до рабочей температуры фиксируем коленчатый вал от проворачивания выставляем поршень проверяемого цилиндра в ВМТ в конце такта сжатия
Если показания двух манометров одинаковые – утечек нет.
По разности давлений (показаний прибора), можно судить о состоянии ЦПГ.
Можно косвенно определить состояние ЦПГ по звуку, назовем это — «по шипению», что будет означать утечку в том или ином месте, к примеру, если мы слышим звук из: клапанной крышки: неплотное прилегание поршневых колец, прорыв газов в картер выхлопной трубы: негерметичность выпускного клапана пузыри в расширительном бачке охлаждающей жидкости: прокладка ГБЦ перетекание воздуха в соседний цилиндр – прокладка между цилиндрами
Вот так или приблизительно так звучал ответ на вопрос по износу ЦПГ и способах его проверки на курсах обучения автомобильной Диагностике преподавателем Козырой Андреем Николаевичем .
Информационный отдел компании BrainStorm
Видео:как замерить выработку поршня и цилиндраСкачать
Износ стенок цилиндров, или что делать, разобрав
Важнейшим этапом после разборки двигателя является измерение износа стенок цилиндров. Исходя из сделанных измерений будет приниматься решение, что возможно сделать с двигателем далее – либо его растачивать до ремонтного размера, либо достаточно поменять комплект колец на поршнях.
Итак, вам потребуется измерительный инструмент, а именно нутромер и микрометр, диапазон измерения которых лежит в пределах от 63 до 67 мм.
Номинальные диаметры двигателей:
— 160.910 (598 см. куб.) составляет 63,5 мм
— 160ю920 /921 / 922 /923 составляет 66,5 мм
Процедура замера состоит в измерении диаметров цилиндра по трем плоскостям и в двух направлениях в каждой из плоскостей (вдоль оси коленвала и поперек оной)
Итак, для начала вы настраиваете нутромер, чтобы его диапазон измерений лежал в пределах диаметра вашего блока цилиндров. Процедура замера выглядит так (по верхней плоскости).
Вам для удобства фиксации замеров лучше составить таблицу, в которую вы занесете все 18 замеров. Выглядит это так примерно:
В данном случае производились замеры на двигателе с объёмом 698 см. куб.
Рассмотрим расположение плоскостей замера:
Плоскость А соответствует верхней мертвой точке первого компрессионного кольца поршня
Плоскость В соответствует центральной части рабочей поверхности цилиндра
Плоскость С соответствует нижней мертвой точке маслосъёмного кольца поршня
Необходимо уточнить допустимые параметры износа стенок цилиндров:
— Допустимое отклонение от истинной цилиндрической формы (овальность) составляет для нового двигателя 0,01 мм
— Предел износа по продольному и поперечному направлению в любой из измеряемых плоскостей 0,15 мм
— Допустимый износ стенок цилиндра, при котором еще не обязательно делать расточку – 0,07 мм
К сожалению, в WIS не упомянут такой параметр, как овальность и бочкообразность. По другим источникам овальность (разность диаметров в продолном и поперечном направлениях) не должна превышать 0,03 мм.
Читайте также: Цилиндр тормозной передний правый ваз 2108 артикул
Бочкообразность (Больший диаметр в сечении В по сравнению с А и С) тоже должна быть не более указанных для овальности.
Видео:износ гильзы поршневого цилиндра ее проверка с помощью нутромера.Скачать
Своими силами проверяем зазор между поршнем и цилиндром
В момент пуска холодного двигателя вы вдруг, услышали звук, напоминающий стук, а при прогреве двигателя он исчез или уменьшился, то пришло время проверять зазор между поршнями и цилиндрами. То есть пора браться за динамометрический ключ, и начинать откручивать головку блока цилиндров.
Видео:(0.02 мм) ДВЕ СОТКИ которые СПАСУТ твой двигательСкачать
Что происходит с зазором между поршнем и цилиндром
В процессе правильной эксплуатации двигателя происходит естественный процесс и зазор между поршнем и цилиндром сужается. Это происходит исходя из условий постоянной эксплуатации в высоком температурном режиме деталей.
Кроме того, причиной сужения зазора между поршнем и цилиндром может являться неправильная регулировка движущихся деталей, температурная перегрузка или перекос цилиндров. Не следует забывать, что блоки цилиндров всё чаще выполнены из алюминиевых материалов, которые имеют двойной коэффициент расширения, по сравнению с легированным чугуном.
Уменьшенный зазор между поршнем и цилиндром приводит к тому, что возникает полусухое трение, и, как результат, повышается температура деталей блока цилиндров. Постепенно смазка прекращается вообще и следствием исчезновения зазора являются первые задиры на поршне.
Практически всегда итогом диагностики состояния блока цилиндров является ремонт цилиндров и элементов поршневой группы двигателя. Полностью определить степень дефектов поршней, гильз и остальных деталей, можно только после разборки головки блока цилиндров.
Добравшись до поршневой группы приступаем к дефектовке цилиндров и поршней. Основными измерительными приборами при измерении диаметров являются: микрометр – для поршней и нутромер (индикаторный калибр) для измерения диаметра цилиндра.
Видео:Люфт поршней в цилиндрахСкачать
Нормы соответствия поршней и цилиндров
Прежде всего, занявшись ремонтом поршневой группы, вы должны знать, что существуют группы диаметров поршней, и таблицы номинальных размеров цилиндров и поршней. Именно на эту информацию и нужно ориентироваться в дальнейшем.
Диаметр поршней классифицируется по наружному диаметру на 5-ть классов: A, B, C, D, E через каждые 0,01 мм размера. Плюс категории по диаметру отверстия под поршневой палец через каждые 0,004 мм. Эти данные в виде цифры (категория отверстия) и буквы (класс поршня) маркируются на днище поршня.
Существуют расчетные нормы, которым должен соответствовать зазор между поршнем и цилиндром. Для новых деталей он должен быть 0,05 – 0,07 мм. Для бывших в эксплуатации деталей зазор между поршнем и цилиндром не должен превышать 0,15 мм.
Собственно для того и осуществляется промер зазора между поршнем и цилиндром. Чтобы либо приобрести поршни именно того класса, что и цилиндры. В случае если у эксплуатируемого двигателя зазор между поршнем и цилиндром превысил 0, 15 мм, то вам необходимо приступать к подбору поршней к цилиндрам, с максимальным приближением к расчетному размеру.
Предварительно должна производиться расточка цилиндров максимально приближенная к ближайшему по значению ремонтному размеру. Плюс нужно не забыть оставить припуск примерно в 0,03 мм для хонингования поверхности цилиндра после расточки. А вот теперь можно и за поршнями.
При хонинговке необходимо выдерживать диаметр, чтобы при установке поршня зазор соответствовал допустимой максимальной цифре зазора новых деталей – 0,045 мм.
Поршни измеряются микрометром, а цилиндры нутромером. Диаметр цилиндра измеряют в четырёх поясах и двух перпендикулярных плоскостях.
Подбирая поршни к цилиндрам, помимо номинального либо ремонтного размера, нужно обязательно учитывать массу поршней. Она бывает нормальная, увеличенная или уменьшенная на 5 грамм. К поршням ремонтной группы, кроме всего, подбираются ремонтные кольца, тоже ремонтных размеров.
Определившись с зазором между поршнем и цилиндром, вы легко подберете нудные размеры, и после проведенной расточки цилиндра (по необходимости) установите поршень.
Удачи вам при определении зазора между поршнем и цилиндром.
💥 Видео
зазоры поршневых колец , как их проверитьСкачать
Зазорам - быть, чтобы Двигатель "Не Жрал" масло. Как Правильно? Ч.2Скачать
допустимый люфт в поршневой. Люфт в блоке, допуски по люфту.Скачать
Износ гильзы, проверяю...Скачать
Как подобрать поршень под рабочий цилиндрСкачать
ЗАДИРОВ в цилиндрах НЕ БУДЕТ если делать так...Скачать
Определение износа цилиндра в гаражных условияхСкачать
Бюджетный способ лечения задировСкачать
Болтанка поршней в цилиндрах 2AZ-FEСкачать
2 часть Измерение эллипса блока цилиндров двигателя 2.4 Додж караванСкачать
Часть 1. Растачивать цилиндры,или заменить поршневые кольца?Нет компрессии в двух цилиндрах.Скачать
Микрометр и нутромер. Как измерить цилиндры?Скачать
Хон или зеркало? Научно-практический коментарийСкачать
Тепловой зазор между поршнем и цилиндромСкачать
Какой Должен Быть Зазор в Поршневых Кольцах Двигателя МашиныСкачать
Почему нельзя просто взять и поменять кольца?!Скачать