Высота цилиндра равна 2 найдите радиус этого цилиндра

Авто помощник

В данной публикации мы рассмотрим, как можно вычислить радиус цилиндра и разберем примеры решения задач для закрепления материала.

Видео:№530. Высота цилиндра равна 12 см, а радиус основания равен 10 см. Цилиндр пересеченСкачать

№530. Высота цилиндра равна 12 см, а радиус основания равен 10 см. Цилиндр пересечен

Формулы вычисления радиуса цилиндра

Высота цилиндра равна 2 найдите радиус этого цилиндра

1. Через объем и высоту

Радиус цилиндра рассчитывается по формуле:

Высота цилиндра равна 2 найдите радиус этого цилиндра

V – объем цилиндра; считается как произведение числа π на высоту фигуры на квадрат радиуса круга, являющего ее основанием.

  • R – радиус основания цилиндра, т.е. окружности;
  • π – число, округленное значение которого равняется 3,14.

2. Через площадь боковой поверхности

Радиус цилиндра считается таким образом:

Высота цилиндра равна 2 найдите радиус этого цилиндра

Sбок. – площадь боковой поверхности цилиндра; равна произведению длины окружности (2 π R), являющейся основанием фигуры, на его высоту:

3. Через полную площадь поверхности

Высота цилиндра равна 2 найдите радиус этого цилиндра

Данная формула получена следующим образом:

S – полная площадь поверхности фигуры, равная:

S = 2 π Rh + 2 π R 2 или S = 2 π R(h + R)

Возьмем первое выражение. Если перенести S в правую часть, получим:

2 π R 2 + 2 π Rh – S = 0

Можно заметить, что это квадратное уравнение вида ax 2 + bx + c = 0, где:

R является корнем данного уравнения (x). Подставив в стандартную формулу для расчета корней наши значения a, b и с получаем*:

Высота цилиндра равна 2 найдите радиус этого цилиндра

* в нашем случае – только один положительный корень, т.к. радиус не может быть отрицательным.

Видео:№529. Высота цилиндра равна 8 см, радиус равен 5 см. Найдите площадь сечения цилиндраСкачать

№529. Высота цилиндра равна 8 см, радиус равен 5 см. Найдите площадь сечения цилиндра

Примеры задач

Задание 1
Высота цилиндра равняется 5 см, а объем – 141,3 см 3 . Вычислите его радиус.

Высота цилиндра равна 2 найдите радиус этого цилиндра

Решение:
Воспользуемся соответствующей формулой, подставив в нее известные по условиям задачи значения:

Задание 2
Найдите радиус цилиндра, если площадь его боковой поверхности равна 175,84 см 2 , а высота составляет 7 см.

Высота цилиндра равна 2 найдите радиус этого цилиндра

Решение:
Применим формулу, в которой задействованы заданные величины:

Задание 3
Рассчитайте радиус цилиндра, если полная площадь его поверхности – 602,88 см 2 , а высота – 10 см.

Высота цилиндра равна 2 найдите радиус этого цилиндра

Решение:
Используем третью формулу для нахождения неизвестной величины:

Читайте также: Самодельный станок для шлифовки цилиндров

Видео:11 кл.Егэ. Радиус основания цилиндра равен ,2 высота равна 3 .Найдите площадь боковой поверхности циСкачать

11 кл.Егэ. Радиус основания цилиндра равен ,2 высота равна 3 .Найдите площадь боковой поверхности ци

Высота цилиндра равна 2 найдите радиус этого цилиндра

Высота цилиндра равна 5, а радиус основания 10.

а) Докажите, что площадь боковой поверхности цилиндра равна площади его основания.

б) Найдите площадь сечения цилиндра плоскостью, проходящей параллельно оси цилиндра на расстоянии 6 от неё.

а) Вспомним, что площадь боковой поверхности цилиндра вычисляется по формуле , где — радиус основания, — высота цилиндра. В данном случае , поэтому , откуда и следует требуемое.

б) Сечение цилиндра плоскостью, проходящей параллельно его оси OO1, — прямоугольник ABB1A1 (O и AB — соответственно центр и хорда нижнего основания цилиндра), AA1 = 5. Расстояние от оси цилиндра до плоскости сечения равно высоте OH треугольника OAB. OA = OB = 10, OH = 6, откуда

В условии сказано, что дан цилиндр: «Высота цилиндра. «, а в решении рассмотрен прямой цилиндр. Действительно, ответ такой же получится при решении задачи с наклонным цилиндром, но тем не менее, в сечении образуется параллелограмм, а не прямоугольник: прямая АА1 параллельна и равна прямой ВВ1, как образующие, которые параллельны, в свою очередь оси цилиндра — прямой ОО1. По признаку параллельности прямой и плоскости получаем, что ОО1 параллельна плоскости (АА1ВВ1). И уже нельзя говорить, что ОО1 является высотой, ведь цилиндр может быть и наклонным. Прямая ОО1 является осью цилиндра. А условная прямая О1М может являться высотой цилиндра (точка М может совпасть с точкой О, если цилиндр прямой). Она будет являться и высотой параллелограмма (это может быть и прямоугольник, который по определению также является параллелограммом).

Таким образом, ответ хотя и верный, но рассмотрено частное решение данной задачи. Либо составители допустили ошибку не указав, что дан прямой цилиндр (в 2018-ом же писали: «. образующая перпендикулярна плоскости основания»), либо решение данной задачи следует подправить.

В школьном курсе задачи о наклонных цилиндрах не рассматриваются.

Видео:№522. Диагональ осевого сечения цилиндра равна 48 см. Угол между этой диагональю и образующейСкачать

№522. Диагональ осевого сечения цилиндра равна 48 см. Угол между этой диагональю и образующей

Высота цилиндра равна 2 найдите радиус этого цилиндра

Высота цилиндра равна 3, а радиус основания равен 13.

а) Постройте сечение цилиндра плоскостью, проходящей параллельно оси цилиндра, так, чтобы площадь этого сечения равнялась 72.

Читайте также: Схема протяжки блока цилиндров 402 двигателя

б) Найдите расстояние от плоскости сечения до центра основания цилиндра.

а) Пусть OO1 — ось цилиндра. Проведем AB и CD параллельно оси цилиндра. Проведем BD и AC. Так как через две параллельные прямые проходит единственная плоскость, то прямоугольник BDCA — искомое сечение (см. рис.).

б) В этом прямоугольнике одна сторона будет равняться высоте цилиндра, а вторая — хорде окружности, лежащей в основании. Так как то где x — хорда AC. Проведем OH перпендикулярно AC. В силу того, что треугольник ACO равнобедренный, точка H также будет являться серединой AC. Тогда из прямоугольного треугольника, у которого гипотенуза — радиус OC, а один катет — половина этой хорды, находим второй катет OH по теореме Пифагора.

Таким образом, расстояние от центра окружности до сечения равно 5.

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

Видео:Цилиндр и конус имеют общее основание и высоту. Высота цилиндра равна радиусу основания... (ЕГЭ)Скачать

Цилиндр и конус имеют общее основание и высоту. Высота цилиндра равна радиусу основания... (ЕГЭ)

Высота цилиндра равна 2 найдите радиус этого цилиндра

Даны два цилиндра. Радиус основания и высота первого равны соответственно 3 и 2, а второго — 8 и 9. Во сколько раз объём второго цилиндра больше объёма первого?

Объём цилиндра находится по формуле: Следовательно, отношение объёмов цилиндров:

Даны два цилиндра. Радиус основания и высота первого равны соответственно 9 и 8, а второго — 4 и 9. Во сколько раз объём первого цилиндра больше объёма второго?

Объём цилиндра находится по формуле:

Найдём объём первого цилиндра:

Найдём объём второго цилиндра:

Найдём отношение объёма первого цилиндра ко второму:

Даны два цилиндра. Радиус основания и высота первого равны соответственно 4 и 1, а второго — 6 и 4. Во сколько раз объём второго цилиндра больше объёма первого?

Объём цилиндра находится по формуле:

Найдём объём первого цилиндра:

Найдём объём второго цилиндра:

Найдём отношение объёма второго цилиндра к первому:

Даны два цилиндра. Радиус основания и высота первого равны соответственно 9 и 3, а второго — 3 и 9. Во сколько раз объём первого цилиндра больше объёма второго?

Объём цилиндра находится по формуле:

Найдём объём первого цилиндра:

Найдём объём первого цилиндра:

Найдём отношение объёма первого цилиндра ко второму:

Даны два цилиндра. Радиус основания и высота первого равны соответственно 2 и 3, а второго — 8 и 3. Во сколько раз объём второго цилиндра больше объёма первого?

Объём цилиндра находится по формуле:

Найдём объём первого цилиндра:

Найдём объём первого цилиндра:

Найдём отношение объёма второго цилиндра к первому:

Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 6 и 9, а второго — 9 и 2. Во сколько раз объём первого цилиндра больше объёма второго?

Объём цилиндра находится по формуле:

Найдём объём первого цилиндра:

Найдём объём первого цилиндра:

Найдём отношение объёма первого цилиндра ко второму:

Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 9 и 3, а второго — 3 и 9. Во сколько раз объём первого цилиндра больше объёма второго?

Объём цилиндра находится по формуле:

Найдём объём первого цилиндра:

Найдём объём первого цилиндра:

Найдём отношение объёма первого цилиндра ко второму:

Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 4 и 1, а второго — 6 и 4. Во сколько раз объём второго цилиндра больше объёма первого?

Объём цилиндра находится по формуле:

Найдём объём первого цилиндра:

Найдём объём первого цилиндра:

Найдём отношение объёма второго цилиндра к первому:

Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 6 и 5, а второго — 2 и 6. Во сколько раз объём Во сколько раз объём первого цилиндра больше объёма второго?

Объём цилиндра находится по формуле:

Найдём объём первого цилиндра:

Найдём объём первого цилиндра:

Найдём отношение объёма первого цилиндра ко второму:

📺 Видео

ЗАДАНИЕ 8 из ЕГЭ_53Скачать

ЗАДАНИЕ 8 из ЕГЭ_53

Егэ,11 кл. Длина окружности основания цилиндра равна 3 , высота равна 2. Найдите площадь боковой повСкачать

Егэ,11 кл. Длина окружности основания цилиндра равна 3 , высота равна 2. Найдите площадь боковой пов

ЕГЭ 2022 математика задача 4 вариант 2Скачать

ЕГЭ 2022 математика задача 4 вариант 2

ЗАДАНИЕ 8 из ЕГЭ_52Скачать

ЗАДАНИЕ 8 из ЕГЭ_52

11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

№531. Высота цилиндра равна 10 дм. Площадь сечения цилиндра плоскостью, параллельнойСкачать

№531. Высота цилиндра равна 10 дм. Площадь сечения цилиндра плоскостью, параллельной

Радиус основания цилиндра равен 2, высота равна 3. Найдите площадь боковой поверхности цилиндраСкачать

Радиус основания цилиндра равен 2, высота равна 3. Найдите площадь боковой поверхности цилиндра

🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Даны два цилиндра. Радиус основания и высота ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длинеСкачать

№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длине

Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

ЗАДАНИЕ 2 ЕГЭ (ПРОФИЛЬ). ЦИЛИНДР.Скачать

ЗАДАНИЕ 2 ЕГЭ (ПРОФИЛЬ). ЦИЛИНДР.

№540. Высота цилиндра на 12 см больше его радиуса, а площадь полной поверхности равна 288π см2Скачать

№540. Высота цилиндра на 12 см больше его радиуса, а площадь полной поверхности равна 288π см2

Задание 2 ЕГЭ профиль (Стереометрия) по сборнику Ященко 2023Скачать

Задание 2  ЕГЭ профиль (Стереометрия) по сборнику Ященко 2023

Егэ.11кл. Объём первого цилиндра равен 12 м³, у второго цилиндра высота в 3 раза больше,а основаниеСкачать

Егэ.11кл. Объём первого цилиндра равен 12 м³, у второго цилиндра высота в 3 раза больше,а основание

№523. Осевое сечение цилиндра — квадрат, диагональ которого равна 20 см. Найдите: а) высотуСкачать

№523. Осевое сечение цилиндра — квадрат, диагональ которого равна 20 см. Найдите: а) высоту
Поделиться или сохранить к себе:
Технарь знаток