Высота цилиндра равна 3 равнобедренный треугольник abc с боковой

Авто помощник

Видео:Цилиндр и конус имеют общее основание и высоту. Высота цилиндра равна радиусу основания... (ЕГЭ)Скачать

Цилиндр и конус имеют общее основание и высоту. Высота цилиндра равна радиусу основания... (ЕГЭ)

Высота цилиндра равна 3 равнобедренный треугольник abc с боковой

Задание С2 (Семенов, Ященко, Высоцкий, ЕГЭ по математике 2013)

Высота цилиндра равна 3 равнобедренный треугольник abc с боковой

Дана прямая призма ABCDA1B1C1D1. Основание призмы — ромб со стороной 4 и острым углом . Высота призмы равна 5. Найдите угол между плоскостью AC1B и плоскостью ABD.

Высота цилиндра равна 3 равнобедренный треугольник abc с боковой

Высота цилиндра равна 3 равнобедренный треугольник abc с боковой

Ответ:

Задание С2 (Демоверсия ЕГЭ 2015, профильный уровень)

В основании прямой призмы ABCDA1B1C1D1 лежит квадрат ABCD со стороной 2, а высота призмы равна 1. Точка E лежит на диагонали BD1 ,причём BE = 1.
а) Постройте сечение призмы плоскостью A1C1E.
б) Найдите угол между плоскостью сечения и плоскостью ABC .

Высота цилиндра равна 3 равнобедренный треугольник abc с боковой

Высота цилиндра равна 3 равнобедренный треугольник abc с боковой

Ответ:

В правильной треугольной пирамиде MABC с основанием ABC стороны основания равны 6, а боковые ребра равны 8. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM — точка L. Известно, что CD = BE = LM = 2. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D, и L.

Высота цилиндра равна 3 равнобедренный треугольник abc с боковой

В треугольной пирамиде MABC основанием является правильный треугольник ABC, ребро MB перпендикулярно плоскости основания, стороны основания равны 3, а ребро MA равно 6. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM — точка L. Известно, что AD = AL = 2 и BE = 1. Найдите угол между плоскостью основания и плоскостью, проходящей через точки E, D и L.

Высота цилиндра равна 3 равнобедренный треугольник abc с боковой

В треугольной пирамиде MABC основанием является правильный треугольник ABC, ребро MA перпендикулярно плоскости основания, стороны основания равны 3, а ребро MB равно 5. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM — точка L. Известно, что AD = 2 и BE = ML = 1. Найдите угол между плоскостью основания и плоскостью, проходящей через точки E, D и L.

Читайте также: Что за стук в цилиндре иж планета 5

Высота цилиндра равна 3 равнобедренный треугольник abc с боковой

Высота цилиндра равна 3. Равнобедренный треугольник ABC с боковой стороной 10 и углом A = 120 градусов расположен так, что его вершина A лежит на окружности нижнего основания цилиндра , а вершины B и C — на окружности верхнего основания. Найдите угол между плоскостью ABC и плоскостью основания цилиндра.

Высота цилиндра равна 3 равнобедренный треугольник abc с боковой

В правильной треугольной пирамиде MABC с вершиной M сторона основания AB равна 6. На ребре AB отмечена точка K так, что AK:KB = 5:1. Сечение MKC является равнобедренным треугольником с основанием MK. Найдите угол между боковыми гранями пирамиды.

Видео:Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)Скачать

Геометрия 7 класс (Урок№13 - Равнобедренный треугольник.)

Высота цилиндра равна 3 равнобедренный треугольник abc с боковой

Высота цилиндра равна 3. Равнобедренный треугольник ABC с боковой стороной 10 и ∠A = 120° расположен так, что его вершина A лежит на окружности нижнего основания цилиндра, а вершины B и C — на окружности верхнего основания.

а) Найдите угол между плоскостью ABC и плоскостью основания цилиндра.

б) Докажите, что радиус основания цилиндра больше, чем .

а) Пусть AA1 — образующая цилиндра, M — середина хорды BC. Тогда

В равнобедренных треугольниках BAC и BA1C медианы AM и A1M являются высотами. Поэтому искомый угол между плоскостями равен углу ∠AMA1. В прямоугольном треугольнике AMA1 имеем:

б) Из пункта а) получаем, что , , значит . Тогда . Пусть R — радиус основания цилиндра. Тогда, по теореме синусов . Отсюда . Что и требовалось доказать.

Видео:№259. Угол, противолежащий основанию равнобедренного треугольника, равен 120°. Высота, проведеннаяСкачать

№259. Угол, противолежащий основанию равнобедренного треугольника, равен 120°. Высота, проведенная

Высота цилиндра равна 3 равнобедренный треугольник abc с боковой

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

Читайте также: Ствол цилиндр в охоте

Высота цилиндра равна 3. Равнобедренный треугольник ABC с боковой стороной 10 и ∠A = 120° расположен так, что его вершина A лежит на окружности нижнего основания цилиндра, а вершины B и C — на окружности верхнего основания.

а) Найдите угол между плоскостью ABC и плоскостью основания цилиндра.

б) Докажите, что радиус основания цилиндра больше, чем .

В правильной треугольной пирамиде MABC с вершиной M сторона основания AB равна 6. На ребре AB отмечена точка K так, что AK : KB = 5 : 1.

а) Докажите, что объем пирамиды делится плоскостью MKC в отношении 5:1.

б) Сечение MKC является равнобедренным треугольником с основанием MK. Найдите угол между боковыми гранями пирамиды.

Радиус основания конуса с вершиной P равен 6, а длина его образующей равна 9. На окружности основания конуса выбраны точки A и B, делящие окружность на две дуги, длины которых относятся как 1 : 3.

а) Докажите, что угол меньше .

б) Найдите площадь сечения конуса плоскостью ABP.

Радиус основания конуса с вершиной P равен 6, а длина его образующей равна 9. На окружности основания конуса выбраны точки A и B, делящие окружность на две дуги, длины которых относятся как 1 : 5.

а) Докажите, что сечение конуса плоскостью ABP — равнобедренный остроугольный треугольник.

б) Найдите площадь сечения конуса плоскостью ABP.

Косинус угла между боковой гранью и основанием правильной треугольной пирамиды равен Найдите угол между боковыми гранями этой пирамиды.

Косинус угла между боковой гранью и основанием правильной треугольной пирамиды равен Найдите угол между боковыми гранями этой пирамиды.

В правильной треугольной пирамиде MABC с основанием ABC стороны основания равны 8, а боковые рёбра 16. На ребре AC находится точка D, на ребре AB находится точка E, а на ребре AM — точка L. Известно, что CD = BE = LM = 4. Найдите площадь сечения пирамиды плоскостью, проходящей через точки E, D и L.

Читайте также: Как работают цилиндры ep6

В треугольной пирамиде основанием является правильный треугольник ребро перпендикулярно плоскости основания, стороны основания равны а ребро На ребре находится точка на ребре точка а на ребре — точка Известно, что и Найдите площадь сечения пирамиды плоскостью, проходящей через точки и

Видео:№260. Высота, проведенная к основанию равнобедренного треугольника, равна 7,6 см, а боковая сторонаСкачать

№260. Высота, проведенная к основанию равнобедренного треугольника, равна 7,6 см, а боковая сторона

Высота цилиндра равна 3 равнобедренный треугольник abc с боковой

Высота цилиндра равна 3. Равнобедренный треугольник ABC с боковой стороной 10 и ∠A = 120° расположен так, что его вершина A лежит на окружности нижнего основания цилиндра, а вершины B и C — на окружности верхнего основания.

а) Найдите угол между плоскостью ABC и плоскостью основания цилиндра.

б) Докажите, что радиус основания цилиндра больше, чем .

а) Пусть AA1 — образующая цилиндра, M — середина хорды BC. Тогда

В равнобедренных треугольниках BAC и BA1C медианы AM и A1M являются высотами. Поэтому искомый угол между плоскостями равен углу ∠AMA1. В прямоугольном треугольнике AMA1 имеем:

б) Из пункта а) получаем, что , , значит . Тогда . Пусть R — радиус основания цилиндра. Тогда, по теореме синусов . Отсюда . Что и требовалось доказать.

Видео:№252. Основанием пирамиды DABC является равнобедренный треугольник ABC, в котором АВ = АС, ВС=6 смСкачать

№252. Основанием пирамиды DABC является равнобедренный треугольник ABC, в котором АВ = АС, ВС=6 см

Высота цилиндра равна 3 равнобедренный треугольник abc с боковой

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

Правильные треугольники и лежат в перпендикулярных плоскостях, Точка — середина а точка делит отрезок так, что Вычислите объём пирамиды

🎦 Видео

Равнобедренный треугольник. 7 класс.Скачать

Равнобедренный треугольник. 7 класс.

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

ЗАДАНИЕ 8 из ЕГЭ_53Скачать

ЗАДАНИЕ 8 из ЕГЭ_53

Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора | Геометрия | АлгебраСкачать

Нахождение площади равнобедренного треугольника при помощи теоремы Пифагора  |  Геометрия | Алгебра

Задание 24 Равнобедренный треугольникСкачать

Задание 24 Равнобедренный треугольник

7 класс, 18 урок, Свойства равнобедренного треугольникаСкачать

7 класс, 18 урок, Свойства равнобедренного треугольника

№531. Высота цилиндра равна 10 дм. Площадь сечения цилиндра плоскостью, параллельнойСкачать

№531. Высота цилиндра равна 10 дм. Площадь сечения цилиндра плоскостью, параллельной

ЗАДАНИЕ 8 из ЕГЭ_52Скачать

ЗАДАНИЕ 8 из ЕГЭ_52

КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрияСкачать

КАТЕТЫ И ВЫСОТА В ПРЯМОУГОЛЬНОМ ТРЕУГОЛЬНИКЕ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрия

Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

№228. Основанием наклонной призмы АВСА1В1С1 является равнобедренный треугольник ABCСкачать

№228. Основанием наклонной призмы АВСА1В1С1 является равнобедренный треугольник ABC

Профильный ЕГЭ 2024. Вся стереометрия первой части. Задача 3. МиниСИРОПСкачать

Профильный ЕГЭ 2024. Вся стереометрия первой части. Задача 3. МиниСИРОП

Формулы равностороннего треугольника #shortsСкачать

Формулы равностороннего треугольника #shorts

Площадь равнобедренного треугольника равна √3 ... | ОГЭ 2017 | ЗАДАНИЕ 9 | ШКОЛА ПИФАГОРАСкачать

Площадь равнобедренного треугольника равна √3 ... | ОГЭ 2017 | ЗАДАНИЕ 9 | ШКОЛА ПИФАГОРА

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольникСкачать

КАК НАЙТИ ВЫСОТУ ТРЕУГОЛЬНИКА? ЕГЭ и ОГЭ #shorts #егэ #огэ #математика #профильныйегэ #треугольник
Поделиться или сохранить к себе:
Технарь знаток