Вывести расчетную формулу определения плотности цилиндра

Авто помощник

Цель работы: познакомиться с методом обработки результатов измерений, научиться пользоваться штангенциркулем и микрометром.

Оборудование: цилиндр, штангенциркуль, микрометр.

Плотность вещества характеризует распределение массы по объему тела. В твердом теле распределение массы может быть неравномерным и, в общем случае, плотность является функцией координат точек тела. При равномерном распределении массы m по объему тела V (однородное тело) плотность равна:

В данной работе определяется плотность тела, имеющего форму цилиндра, объем которого находится по формуле:

где d — диаметр цилиндра, а h — высота цилиндра измеряются с помощью микрометра и штангенциркуля. В работе необходимо определить погрешность измерения плотности однородного тела при надежности (  = 0.95 ) по правилам вычисления погрешности косвенных измерений.

Порядок выполнения работы

Задание 1

Измерение диаметра цилиндра

1. Микрометром проведите измерение диаметра цилиндра не менее 7 раз. Результаты измерений и вычислений занесите в таблицу 1.

2. Найдите среднее арифметическое значение диаметра

где N — число измерений, i — номер измерения.

Результаты измерения диаметра цилиндра. Микрометр № … . Цена деления микрометра ώ = 0,01 мм, погрешность прибора δ = 0,01мм.

3. Проделайте вычисления отклонения результатов отдельных измерений от среднего арифметического ∆ d i = d i — d > и квадратов отклонений ( d i — d >) 2 . Задавшись надежностью  = 0.95 , по таблице найдите коэффициент Стьюдента t  (N) .

4. Вычислите погрешность измерения диаметра цилиндра (полуширину доверительного интервала) по формуле

где δ – погрешность прибора, ω – цена деления шкалы прибора, N количество измерений.

5. Рассчитайте относительную погрешность ε d измерения диаметра цилиндра по формуле

5. Результат измерений запишите в стандартном виде:

Задание 2

Измерение высоты цилиндра.

Проделайте для высоты цилиндра те же измерения и вычисления (при той же надежности), что и для диаметра цилиндра. Если невозможно измерить высоту цилиндра микрометром, сделайте это штангенциркулем.

Результаты измерений и вычислений занесите в таблицу. Результат измерений представьте в стандартном виде.

H = ( h > ± ∆ h ) мм, ε h = … , при α = 0,95.

Задание 3

Измерение массы цилиндра.

Измерьте массу цилиндра на аналитических весах с ценой деления 1 мг. В этом случае значение массы можно определить с высокой точностью, так как погрешность прибора и погрешность округления массы достаточно малы, и тогда погрешностью в определении массы цилиндра можно пренебречь.

Вычисление плотности цилиндра и погрешности косвенных измерений

1. Вычислите среднее значение плотности материала цилиндра по формуле:

где d > и h > — средние значения диаметра и высоты цилиндра. Число  = 3.14159. округлите так, чтобы его относительная погрешность была на порядок меньше наименьшей из относительных погрешностей  d ,  h ,  m .

Например, если наименьшая из относительных погрешностей  d ,  h ,  m больше 13% , то число  следует округлить до двух значащих цифр, т.е.  = 3.1 . В этом случае относительная погрешность

на порядок меньше погрешностей  d ,  h ,  m . Если же наибольшая из погрешностей  d ,  h ,  m больше 0.5% , но меньше 13%, то округление следует провести до трех значащих цифр:  = 3.14. При правильном выборе степени округления любой константы (в том числе и числа π ) погрешность округления не внесёт существенного вклада в величину доверительного интервала измеряемой величины.

Читайте также: Как поменять цилиндр мопеда альфа

3. Вычислите относительную погрешность определения плотности цилиндра по формуле:

3. Вычислите абсолютную погрешность измерения плотности цилиндра

4. Результат измерений запишите в стандартном виде

Коэффициенты Стьюдента для надёжности α = 0,95

Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Лабораторная работа 1.01. Определение плотности твердых тел

Вывести расчетную формулу определения плотности цилиндра

Вывести расчетную формулу определения плотности цилиндра

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ «МАМИ»

Видео:11 класс. Геометрия. Объем цилиндраСкачать

11 класс. Геометрия. Объем цилиндра

Кафедра физики

ЛАБОРАТОРНАЯ РАБОТА 1.01

ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ ТВЕРДЫХ ТЕЛ

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Москва 2005 г.

Теория ошибок, определение плотности твердых тел.

В лабораторном практикуме студенты при выполнении работ должны производить измерения, но при использовании даже очень точных и чувствительных приборов и наилучших условий проведения эксперимента во всяком измерении содержится ошибка (погрешность) характер и причины которой могут быть различными. Существуют методы анализа и учета влияния различных погрешностей на результаты измерений. Все погрешности (ошибки) измерений принято подразделять на систематические и случайные.

Систематические ошибки обусловлены постоянными, но односторонними внешними воздействиями. Например, измерение температуры термометром, у которого нулевая точка смешена, будет систематически неправильным, пока в результаты измерений не будет внесена соответствующая поправка.

Так как систематическая ошибка имеет одно и тоже значение, ее нельзя устранить увеличением числа повторных измерений. Но можно уменьшить систематическую ошибку, критически анализируя факторы, которые могут повлиять на результаты, проверяя используемые приборы по соответствующим эталонам, внося поправки в показания приборов, используя более точные приборы и инструменты.

Случайные ошибки при измерениях обусловлены влиянием большого числа факторов, случайным образом изменяющихся в процессе эксперимента. Например, источником случайных ошибок при взвешивании на аналитических весах может явиться неоднородность в распределении температуры в различных частях весов, влияние колебаний стола из-за проезжающего мимо здания грузовика и т. п.

При повторных измерениях случайные ошибки с одинаковой вероятностью приводят к отклонениям значений измеряемых величин от истинного значения как в сторону увеличения, так и в сторону уменьшения, т. е. случайные ошибки имеют разные численные значения и знаки.

Полностью исключить случайные ошибки нельзя, но их можно уменьшить за счет увеличения числа измерений при одних и тех же условиях эксперимента.

Итак, при измерениях неизбежно возникают погрешности. Теория погрешностей указывает на то, как следует вести измерения и их обработку, чтобы допущенные ошибки были минимальными. Кроме того, устанавливаются пределы, внутри которых заключается точное значение определяемой величины.

ТЕОРИЯ ПОГРЕШНОСТЕЙ

I. ПОГРЕШНОСТИ ПРИ ПРЯМЫХ ИЗМЕРЕНИЯХ

Прямыми измерениями называются такие, при которых измерение величины производится непосредственно по шкале прибора. Например,

измерение длины штангенциркулем, измерение веса тела на весах, определение промежут­ков времени с помощью секундомера. Если отклонение результатов измерений от истинного значения измеряемой величины происходит как в сторону увеличения, так и в сторону уменьшения результатов из­мерений, то наиболее вероятным значением измеряемой величины будет среднее арифметическое всех сделанных измерений:

где — результаты отдельных измерений, n — число измерений.

Читайте также: Цилиндр наряд старинный местные собаки

Для характеристики степени приближения к истинному значению измеря­емой величины вводится понятие абсолютной погрешности — величины, показы­вающей насколько найденное (среднее арифметическое) значение может отли­чаться от истинного значения измеряемой величины.

Для определения абсолютной погрешности сначала нужно найти отклонения каж­дого отдельного измерения от среднего арифметического: , где — отклонение данного измерения, равное разности между сред­ним значением измеряемой величины и результатом этого измерения .

Случайная погрешность вычисляется по формуле:

где — модули отклонений каж­дого отдельного измерения от среднего арифметического значения.

Из формулы (2) и теории вероятностей следует, что с увеличением числа измерений n случайная погрешность будет уменьшаться.

В качестве систематической погрешности берется приборная погрешность, равная половине цены деления шкалы прибора. Ценой деления прибора называется минимальная величина, измеряемая прибором.

В общем случае необходимо принимать во внимание как случайные, так и систематические погрешности прямых измерений. Поэтому абсолютная пог­решность при прямых измерениях рассчитывается по формуле:

где — случайная погрешностей, определяемых по формуле (2),

— систематическая погрешность прибора, инструмента.

Примечание: Если случайная погрешность много меньше систематической, то для повышения точности результата измерений нет смысла увеличивать число измерений, а нужно принять меры к уменьшению систематической погрешности (например, использовать более точные приборы).

Пример. Пусть измеряется диаметр цилиндрического стержня с помощью штанген­циркуля и делается 5 измерений: 34.50 мм, 34.65 мм, 34.30 мм,

Среднее арифметическое всех сделанных измерений:

Полученное значение даёт наиболее вероятное значение измеряемой величины D.

Для нахождения случайной погрешности нужно найти абсолютное значение отклонения каждого из 5-ти измерений от среднего арифметического и затем определить среднее значение этих отклонений:

Цена деления штангенциркуля равна 0.05 мм, следовательно, систематическая погрешность равна .

Абсолютная погрешность при измерении диаметра стержня:

Результат измерений принято записывать следующим образом:

(Результат измерений 34,54 мм и абсолютная погрешность 0,12 мм должны заканчиваться в одинаковом разряде)

Для характеристики точности измерения вводится понятие относительной погрешности:

Относительная погрешность ε представляет собой отношение абсолютной погрешности к среднему значению измеряемой величины. В нашем примере относительная погрешность при измерении диаметра:

Относительная погрешность является безразмерной величиной. Она показывает, какую часть измеряемой величины составляет абсолютная погрешность.

Видео:Урок 28 (осн). Вычисление массы и объема тела по плотностиСкачать

Урок 28 (осн). Вычисление массы и объема тела по плотности

Иногда относительная погрешность выражается в процентах:

I I. ПОГРЕШНОСТЬ ПРИ КОСВЕННЫХ ИЗМЕРЕНИЯХ.

В большинстве случаев в лабораторном практикуме нельзя определить искомую физическую величину непосредственно по приборам. В этом случае прибегают к косвенным измерениям. Косвенными измерениями являются измерения, полученные на основе прямых измерений и подсчитанные по математическим формулам.

Например, объем цилиндра определяется по формуле , где с по­мощью прямых измерений определяется диаметр цилиндра D и его высота h, объем же получается в результате косвенных измерений.

В таких случаях погрешность косвенного измерения зависит не только от погрешностей прямых измерений, но и от вида той математической формулы, по которой находится физическая величина.

Для нахождения погрешностей косвенных измерений удобно воспользо­ваться правилами дифференциального исчисления, считая искомую величину функцией, а величины, непосредственно измеряемые приборами, ее аргу­ментами. Пусть вид функциональной зависимости определяется формулой , где А — результат косвенного измерения, — ре­зультаты прямых измерений. По определению относительная погрешность равна

Читайте также: Шевроле лачетти давление в цилиндрах

С другой стороны . Так как погрешность всегда много меньше измеряемой величины А, ошибки можно считать малыми величинами. Это дает возможность замены знака дифференциала d на знак абсолютной ошибки . То есть, можно записать: .

Из сопоставления приведенных формул следует, что относительную погреш­ность косвенного измерения можно найти путем:

1) логарифмирования исходного выражения ;

2) последующего дифференцирования ;

3) заменой знака дифференциала d на знак абсолютной погрешности ;

4) заменой всех знаков минус на знаки плюс перед знаками абсолютных погрешностей .

Для определения плотности цилиндрического тела применяется формула:

где m — масса тела, D — диаметр, h — высота. Величины m, D, h определяются в результате прямых измерений. Плотность определяется из косвенных изме­рений. Для нахождения относительной погрешности, выполняем следующие действия:

1) находим натуральный логарифм исходного выражения

2) выполняем дифференцирование : ,

3) заменяем знак d на знак : ,

4) перед всеми знаками ставим знаки плюс .

Далее можно найти абсолютную погрешность: ,

где — абсолютная погрешность косвенного измерения, — среднее значение искомой величины, ε – относительная погрешность.

Иногда в зависимости от расчетной формулы удобнее вначале найти абсолют­ную погрешность непосредственно, не связывая ее с относительной погреш­ностью. Для этого используют следующее правило для нахождения абсолютной ошибки при косвенном измерении:

1) дифференцируют исходное выражение;

2) заменяют знак дифференциала d на знак погрешности ;

3) перед всеми знаками ставят знаки плюс.

III. ЗАПИСЬ РЕЗУЛЬТАТА КОСВЕННОГО ИЗМЕРЕНИЯ.

При записи результата косвенного измерения необходимо соблюдать следующие правила:

1. Величину абсолютной погрешности необходимо округлить до двух зна­чащих цифр, если первая из них единица, и до одной во всех остальных случаях (значащими цифрами называются все цифры, кроме нулей, стоящие впереди числа слева). Нули в середине числа и в конце являются значащими. Например, в числе 0.0305 три значащие цифры, в числе 5100 — четыре значащие цифры.

Пример. Если при определении объема цилиндра V абсолютная ошибка оказалась рав­ной , ее следует округлить до двух значащих цифр: . Если , ее следует округлить до одной значащей цифры .

2. Среднее значение измеряемой величины следует записать таким образом, чтобы результат заканчивался в том же разряде, что и абсолютная погрешность.

Пример. Если объем цилиндра при расчете по формуле получается равным , а абсолютная ошибка после округления равна , то объем следует записать также только до десятых

Окончательный результат записывается в виде: .

Такая запись показывает, в каких пределах содержится истинное значение измеряемой величины.

В случае нашего примера для объема цилиндра окончательный результат записывается следующим образом: .

Такая запись указывает, что истинный результат лежит в пределах:

ПРИМЕР ОБРАБОТКИ РЕЗУЛЬТАТОВ КОСВЕННЫХ ИЗМЕРЕНИЙ.

При определении ускорения свободного падения g с помощью математи­ческого маятника используется расчетная формула:

где l — длина математического маятника, измеряемая миллиметровой линейкой, n число колебаний маятника, t — время десяти колебаний маятника, определяемое секундомером. После прямых измерений времени и длины получаем следующие данные:

t = 14.72с, 14.74с, 14.75с, 14.73с, 14.76; n = 10;

1) Результаты измерений заносим в таблицу

Результаты измерений и расчетов. Таблица.

🎥 Видео

Объем цилиндраСкачать

Объем цилиндра

Установление эмпирической и молек. формул по массовым долям элем., входящих в состав в-ва. 10 класс.Скачать

Установление эмпирической и молек. формул по массовым долям элем., входящих в состав в-ва. 10 класс.

Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |Скачать

Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |

Сколько в бочке литров? Посчитаем.Скачать

Сколько в бочке литров? Посчитаем.

✓ Задача про цилиндр | ЕГЭ-2018. Задание 14. Математика. Профильный уровень | Борис ТрушинСкачать

✓ Задача про цилиндр  | ЕГЭ-2018. Задание 14. Математика. Профильный уровень | Борис Трушин

10 класс, 43 урок, Уравнение касательной к графику функцииСкачать

10 класс, 43 урок, Уравнение касательной к графику функции

Урок 6 (осн). Вычисление и измерение объемаСкачать

Урок 6 (осн). Вычисление и измерение объема

Плотность вещества и единицы измерения плотности. Практическая часть - решение задачи. 7 класс.Скачать

Плотность вещества и единицы измерения плотности. Практическая часть - решение задачи. 7 класс.

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

Плотность распределения вероятностиСкачать

Плотность распределения вероятности

Цилиндр и конус имеют общее основание и высоту. Высота цилиндра равна радиусу основания... (ЕГЭ)Скачать

Цилиндр и конус имеют общее основание и высоту. Высота цилиндра равна радиусу основания... (ЕГЭ)

Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭСкачать

Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭ

Цилиндр, конус и шар в задании 2 | Математика ЕГЭ 2023 | УмскулСкачать

Цилиндр, конус и шар в задании 2 | Математика ЕГЭ 2023 | Умскул

Задание №35: вывод формулы органического соединения | Химия 10 класс | УмскулСкачать

Задание №35: вывод формулы органического соединения | Химия 10 класс | Умскул

10 класс(база).Решение задач на нахождение формулы по продуктам сгорания и массовой доли элемента.Скачать

10 класс(база).Решение задач на нахождение формулы по продуктам сгорания и массовой доли элемента.

Урок 94. Вычисление моментов инерции телСкачать

Урок 94. Вычисление моментов инерции тел
Поделиться или сохранить к себе:
Технарь знаток