Задачи по определению объема цилиндра

Авто помощник

1.Высота бака цилиндрической формы равна 40 см, а площадь его основания 150 см 2 . Чему равен объем этого бака (в литрах)? 1л = 1000 см 3 .

2. Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 2 и 6,
а второго — 6 и 4. Во сколько раз объём второго цилиндра больше объёма первого?

3. Вода в сосуде цилиндрической формы находится на уровне h = 80 см. На каком уровне окажется вода, если её перелить в другой цилиндрический сосуд, у которого радиус основания вдвое больше, чем у первого? Ответ дайте
в сантиметрах.

4. Даны две кружки цилиндрической формы. Первая кружка вдвое выше второй, а вторая в четыре раза шире первой. Во сколько раз объём второй кружки больше объёма первой?

5. В бак, имеющий форму цилиндра, налито 5 л воды. После полного погружения в воду детали уровень воды
в баке увеличился в 1,2 раза. Найдите объём детали. Ответ дайте в кубических сантиметрах, зная, что в одном литре
1000 кубических сантиметров.

6. В основании прямой призмы лежит прямоугольный треугольник с катетами 10 и 9. Боковые рёбра призмы
равны 2 π . Найдите объём цилиндра, описанного около этой призмы.

7.Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 3. Объём параллелепипеда равен 36. Найдите высоту цилиндра.

8. В цилиндрическом сосуде уровень жидкости достигает 18 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 3 раза больше диаметра первого? Ответ выразите в сантиметрах.

В цилиндрический сосуд налили 2800 см 3 воды. Уровень жидкости оказался равным 16 см . В воду полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 13 см . Найдите объём детали. Ответ выразите
в куб. см.8. Начало формы

9.В цилиндрический сосуд налили 2800 см 3 воды. Уровень жидкости оказался равным 16 см . В воду полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 13 см . Найдите объём детали. Ответ выразите
в куб. см.

1.Вода в сосуде цилиндрической формы находится
на уровне h = 50 см. На каком уровне окажется вода,
если её перелить в другой цилиндрический сосуд,
у которого радиус основания в два с половиной раза больше, чем уданного? Ответ дайте в сантиметрах.

2.Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 15 и 6,
а второго — 2 и 5. Во сколько раз площадь боковой поверхности первого цилиндра больше площади боковой поверхности второго?

3. В бак цилиндрической формы, площадь основания которого равна 60 квадратным сантиметрам, налита жидкость. Чтобы измерить объём детали сложной формы, её полностью погружают в эту жидкость. Найдите объём детали, если после её погружения уровень жидкости в баке поднялся на 10 см. Ответ дайте в кубических сантиметрах.

Читайте также: Цилиндр мото для чего

4.Высота бака цилиндрической формы равна 40 см, а площадь его основания равна 150 квадратным сантиметрам. Чему равен объём этого бака (в литрах)? В одном литре 1000 кубических сантиметров.

5.В цилиндрическом сосуде уровень жидкости достигает 192 см. На какой высоте будет находиться уровень жидкости, если еёперелить во второй цилиндрический сосуд, диаметр которого в 8 раз больше диаметра первого? Ответ выразите в сантиметрах Конец формы

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Задачи по определению объема цилиндра

Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите

Объем данной части цилиндра равен

Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите

Объем данной части цилиндра равен

Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите

Объем данной части цилиндра равен

Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите

Объем данной части цилиндра равен

Найдите объем V части цилиндра, изображенной на рисунке. В ответе

Объем данной части цилиндра равен

Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите

Объем данной части цилиндра равен

Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите

Объем данной части цилиндра равен

Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите

Объем данной части цилиндра равен

Если сначала найти объем целого цилиндра, то он равен 1/3 * ПИ * r^2 * H, где r=6, H=5, то есть объем цилиндра равен 60 пи, а потом разделить его на четыре, т.к. данный сектор занимает 1/4 части всего цилиндра, то получится 15. В чем дело, что не так?

Ошибка в формуле. Объём цилинлра равен произведению высоты на площадь основания.

Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите

Объем данной части цилиндра равен

Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите

Объем данной части цилиндра равен

Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите

Объем данной части цилиндра равен

Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите

Объем данной фигуры равен сумме объемов цилиндра с радиусом основания 2 и высотой 3 и половины цилиндра с тем же радиусом основания и высотой 1:

Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите

Объем данной фигуры равен сумме объемов цилиндра с радиусом основания 2 и высотой 3 и половины цилиндра с тем же радиусом основания и высотой 1:

Добрый день,в условии указано что первая высота равна 3, а вторая 1. Почему в решении написано 0,5H(2)?

Так учитывается половина цилиндра

Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите

Объем данной фигуры равен разности объемов цилиндра с радиусом основания 5 и высотой 5 и цилиндра с той же высотой и радиусом основания 2:

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Задачи на тему «Цилиндр»

\(\blacktriangleright\) Ось цилиндра – прямая, соединяющая центры его оснований.
Отрезок, соединяющий центры оснований – высота.

Читайте также: Разборка заднего тормозного цилиндра ваз 2107

\(\blacktriangleright\) Образующая цилиндра – перпендикуляр, проведенный из точки границы одного основания к другому основанию.
Заметим, что образующая и высота цилиндра равны друг другу.

\(\blacktriangleright\) Площадь боковой поверхности цилиндра \( >=2\pi rh>>\) , где \(r\) – радиус основания, \(h\) – высота (или образующая).

\(\blacktriangleright\) Площадь полной поверхности цилиндра равна сумме площади боковой поверхности и площадей оснований. \[ >=2\pi rh+2\pi r^2>>\]

\(\blacktriangleright\) Объем цилиндра \( >\cdot h=\pi r^2h>>\)

Задачи по определению объема цилиндра

Заметим, что прямой цилиндр имеет некоторое сходство с прямой призмой, только в ее основаниях лежат многоугольники (граница которых – ломаная), а в основаниях цилиндра – круги (граница которых гладкая).
Поэтому можно сказать, что боковая поверхность прямой призмы “ребристая”, а цилиндра – “гладкая”.

Про прямые круговые цилиндры \(C_1\) и \(C_2\) известно, что у \(C_1\) радиус основания в два раза больше, чем у \(C_2\) , но у \(C_2\) высота в три раза больше, чем у \(C_1\) . Найдите отношение объёма цилиндра \(C_2\) к объёму \(C_1\) .

Обозначим высоту цилиндра \(C_1\) через \(h_1\) , а высоту цилиндра \(C_2\) через \(h_2\) . Обозначим радиус основания цилиндра \(C_1\) через \(r_1\) , а радиус основания цилиндра \(C_2\) через \(r_2\) . Тогда \[r_1 = 2r_2,\qquad h_2 = 3h_1\,.\]

Объём цилиндра \(C_1\) равен \(\pi ^2 h_1 = 4\pi ^2 h_1\) , а объём цилиндра \(C_2\) равен \(3\pi ^2 h_1\) , тогда \[\dfrac > > = \dfrac ^2 h_1> ^2 h_1> = 0,75\]

Объем цилиндра равен \(64\pi\) , а площадь боковой поверхности равна \(32\pi\) . Найдите площадь полной поверхности цилиндра, деленную на \(\pi\) .

Формулы для нахождения объема и боковой поверхности цилиндра: \(V = \pi R^2 h\) , \(S_ > = 2\pi R h\) . Зная величину объема и боковой поверхности, можно выразить радиус цилиндра: \[\frac >> = \frac = \frac = \frac = 2\] \(\Rightarrow\) \(R = 4\) . Площадь полной поверхности складывается из площади боковой поверхности и площадей двух оснований: \[S_ > = 2\pi R h + 2 \pi R^2 = 32\pi + 2 \cdot 16\pi = 64\pi.\] Осталось разделить полученный объем на \(\pi\) , тогда окончательно получаем \(64\) .

Объем цилиндра равен \(100\pi\) , а площадь боковой поверхности равна \(25\pi\) . Найдите высоту цилиндра.

Формулы для нахождения объема и боковой поверхности цилиндра: \(V = \pi R^2 h\) , \(S_ > = 2\pi R h\) . Зная величину объема и боковой поверхности, можно выразить радиус цилиндра: \[\frac >> = \frac = \frac = \frac = 4\] \(\Rightarrow\) \(R = 8\) . Подставим значение радиуса в формулу объема и найдем из этой формулы искомую высоту: \[V = \pi R^2 h = 64\pi h = 100\pi\] \(\Rightarrow\) \(\displaystyle h = \frac = 1,5625\) .

Объём цилиндра \[V = \dfrac >,\] а отношение радиуса его основания к его высоте равно \(5\) . Найдите площадь полной поверхности этого цилиндра.

Задачи по определению объема цилиндра

\[V_ > = \pi R^2 H = \dfrac >,\] \(\dfrac = 5\) , где \(R\) – радиус основания цилиндра, \(H\) – его высота, тогда \(R = 5H\) , следовательно, \[\pi \cdot 25 H^3 = \dfrac >\qquad\Rightarrow\qquad H^3 = \dfrac >,\] откуда \(H = \dfrac >\) , \(R = \dfrac >\) . \[S_ > = 2\pi R H + \pi R^2 = 2\pi R(H + R) = 2\pi\cdot\dfrac >\cdot\dfrac > = 240.\]

Читайте также: Комбинация цилиндра с многогранниками

\(AD\) – ось цилиндра, \(BC\) – его образующая, \(S_ = \dfrac > >\) , \(\angle CAD = 60^\circ\) . Найдите объём цилиндра.

Задачи по определению объема цилиндра

Так как \(AD\) и \(BC\) – высоты цилиндра, то \(ABCD\) – прямоугольник, тогда \[S_ = AD\cdot DC = H\cdot R = \dfrac > >.\]

Рассмотрим прямоугольный треугольник \(ADC\) :
Т.к. \(\angle DAC = 60^\circ\) , то \[AD = \mathrm \, \angle ACD\cdot DC = \mathrm \, 30^\circ\cdot R = \dfrac >,\] т.е. \(H = \dfrac >\) или \(R = \sqrt H\) .

Повторение базовой теории и формул, в том числе и тех, которые позволяют выполнить расчет объема цилиндра, — один из основных этапов подготовки к ЕГЭ. Несмотря на то, что эта тема достаточно подробно рассматривается на уроках математики в школе, с необходимостью вспомнить основной материал и «прокачать» навык решения задач сталкиваются многие учащиеся. Понимая, как вычислить объем и другие неизвестные параметры цилиндра, старшеклассники смогут получить достаточно высокие баллы по итогам сдачи единого государственного экзамена.

Видео:Объем цилиндраСкачать

Объем цилиндра

Основные нюансы, которые стоит вспомнить

Чтобы вопрос, как посчитать объем цилиндра и выполнить измерение других неизвестных параметров при решении задач, не ставил ученика в тупик, рекомендуем повторить основные свойства этой фигуры прямо сейчас в режиме онлайн.

  • Цилиндр представляет собой тело, которое ограничено цилиндрической поверхностью и двумя кругами. Цилиндрическая поверхность является боковой. А круги представляют собой основания фигуры.
  • Высота цилиндра есть расстояние между плоскостями его оснований.
  • Все его образующие являются параллельными и равными между собой.
  • Радиус цилиндра есть радиус его основания.
  • Фигура называется прямой, если ее образующие перпендикулярны основаниям.

Видео:11 класс, 32 урок, Объем цилиндраСкачать

11 класс, 32 урок, Объем цилиндра

Как подготовиться к экзамену качественно и эффективно?

Занимаясь накануне прохождения аттестационного испытания, многие учащиеся сталкиваются с проблемой поиска необходимой информации. Далеко не всегда школьный учебник оказывается под рукой, когда это требуется. А найти формулы, которые помогут рассчитать площадь и другие неизвестные параметры цилиндра, часто бывает достаточно сложно даже в Интернете в онлайн-режиме.

Занимаясь вместе с математическим порталом «Школково», выпускники смогут избежать типовых ошибок и успешно сдать единый госэкзамен. Мы предлагаем выстроить процесс подготовки по-новому, переходя от простого к сложному. Это позволит учащимся определить непонятные для себя тематики и ликвидировать пробелы в знаниях.

Весь базовый материал, который поможет в решении задач на тему «Цилиндр», выпускники смогут найти в разделе «Теоретическая справка». Специалисты «Школково» изложили с доступной форме все необходимые определения и формулы.

Для закрепления полученных знаний учащиеся могут попрактиковаться в решении задач на тему «Цилиндр» и другие темы, например, нахождение площади или объема конуса. Большая, постоянно обновляющаяся подборка заданий представлена в разделе «Каталог».

Чтобы во время подготовки к ЕГЭ быстро найти конкретную задачу по теме «Цилиндр» и освежить в памяти алгоритм ее решения, выпускники могут предварительно сохранить ее в «Избранное». Отрабатывать собственные навыки на нашем сайте имеют возможность не только столичные школьники, но и учащиеся из других российских городов.

💡 Видео

Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭСкачать

Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭ

Объем цилиндра. Практическая часть. 11 класс.Скачать

Объем цилиндра. Практическая часть. 11 класс.

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДРСкачать

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДР

Объём цилиндраСкачать

Объём цилиндра

Задачи на цилиндр. Объем цилиндра - bezbotvyСкачать

Задачи на цилиндр. Объем цилиндра - bezbotvy

11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Вычисление объёма цилиндраСкачать

Вычисление объёма цилиндра

11 класс. Геометрия. Объем цилиндраСкачать

11 класс. Геометрия. Объем цилиндра

Урок 28 (осн). Вычисление массы и объема тела по плотностиСкачать

Урок 28 (осн). Вычисление массы и объема тела по плотности

Миникурс по геометрии. Куб, призма, цилиндр и конусСкачать

Миникурс по геометрии. Куб, призма, цилиндр и конус

Определение показаний прибораСкачать

Определение показаний прибора

Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |Скачать

Как найти объем. Принцип Кавальери | Ботай со мной #050 | Борис Трушин |

Решение задачи по теме "Информационный объём сообщения"Скачать

Решение задачи по теме "Информационный объём сообщения"

Урок 6 (осн). Вычисление и измерение объемаСкачать

Урок 6 (осн). Вычисление и измерение объема

Измерение объема тела неправильной формы | Физика | TutorOnlineСкачать

Измерение объема тела неправильной формы | Физика | TutorOnline

ЦИЛИНДР. КОНУС. ШАР. ЕГЭ. ЗАДАНИЕ 5.СТЕРЕОМЕТРИЯСкачать

ЦИЛИНДР. КОНУС. ШАР. ЕГЭ. ЗАДАНИЕ 5.СТЕРЕОМЕТРИЯ
Поделиться или сохранить к себе:
Технарь знаток