Даны два цилиндра. Радиус основания и высота первого равны соответственно 2 и 6, а второго — 6 и 7. Во сколько раз объём второго цилиндра больше объёма первого?
Объём цилиндра находится по формуле:
Найдём объём первого цилиндра:
Найдём объём второго цилиндра:
Найдём отношение объёма второго шара к первому:
Радиус основания цилиндра равен 26, а его образующая равна 9. Сечение, параллельное оси цилиндра, удалено от неё на расстояние, равное 24. Найдите площадь этого сечения.
Даны два цилиндра. Радиус основания и высота первого равны соответственно 4 и 18, а второго — 2 и 3. Во сколько раз площадь боковой поверхности первого цилиндра больше площади боковой поверхности второго?
Площадь боковой поверхности цилиндра находится по формуле:
Найдём площадь боковой поверхности первого цилиндра:
Найдём площадь боковой поверхности второго цилиндра:
Найдём отношение площади боковой поверхности цилиндра первого цилиндра ко второму:
Радиус основания цилиндра равен 13, а его образующая равна 18. Сечение, параллельное оси цилиндра, удалено от неё на расстояние, равное 12. Найдите площадь этого сечения.
Найдите объём правильной четырёхугольной пирамиды, сторона основания которой равна 4, а боковое ребро равно
Даны два шара с радиусами 9 и 3. Во сколько раз площадь поверхности большего шара больше площади поверхности меньшего?
Сечение, параллельное оси цилиндра, — прямоугольник. Одна его сторона равна образующей цилиндра. Найдем вторую его сторону из прямоугольного треугольника в основании по формуле: где AB — данная сторона, r — радиус основания цилиндра, аh — расстояние от сечения до оси цилиндра. Таким образом, площадь данного сечения равна 18 · 10 = 180.
В основании правильной четырехугольной пирамиды лежит квадрат. Где СH — половина его диагонали: а его площадь равна По теореме Пифагора находим высоту данной пирамиды Отсюда ее объем равен:
Площади шаров относятся как квадраты их радиусов, следовательно, площадь второго шара в раз больше площади первого.
Читайте также: Часть цилиндра геометрическая фигура
Видео:Видеоурок по математике "Цилиндр"Скачать
Задачи для подготовке к ЕГЭ по теме: «Цилиндр. Площадь поверхности цилиндра»
Ищем педагогов в команду «Инфоурок»
Задачи для подготовки к ЕГЭ
» Цилиндр. Площадь поверхности цилиндра»
№ 1 Радиус основания цилиндра равен 2, высота равна 3. Найдите площадь боковой поверхности цилиндра, деленную на .
№2 Длина окружности основания цилиндра равна 3, высота равна 2. Найдите площадь боковой поверхности цилиндра.
№ 3 Площадь осевого сечения цилиндра равна 4. Найдите площадь боковой поверхности цилиндра, деленную на .
№4 Длина окружности основания цилиндра равна 3. Площадь боковой поверхности равна 6. Найдите высоту цилиндра.
№5 Площадь боковой поверхности цилиндра равна 2 , а диаметр основания — 1. Найдите высоту цилиндра.
№6 Радиус основания цилиндра равен 26, а его образующая равна 9. Сечение, параллельное оси цилиндра, удалено от неё на расстояние, равное 24. Найдите площадь этого сечения.
№7 Даны два цилиндра. Радиус основания и высота первого равны соответственно 4 и 18, а второго — 2 и 3. Во сколько раз площадь боковой поверхности первого цилиндра больше площади боковой поверхности второго?
№1 Радиус основания цилиндра равен 7, высота равна 10. Найдите площадь боковой поверхности цилиндра, деленную на .
№2 Длина окружности основания цилиндра равна 3, высота равна 4. Найдите площадь боковой поверхности цилиндра.
№3 Площадь осевого сечения цилиндра равна 7. Найдите площадь боковой поверхности цилиндра, деленную на .
№4 Длина окружности основания цилиндра равна 14. Площадь боковой поверхности равна 182. Найдите высоту цилиндра.
№5 Площадь боковой поверхности цилиндра равна 21, а диаметр основания равен 7. Найдите высоту цилиндра.
№6 Радиус основания цилиндра равен 13, а его образующая равна 18. Сечение, параллельное оси цилиндра, удалено от неё на расстояние, равное 12. Найдите площадь этого сечения.
№7 Даны два цилиндра. Радиус основания и высота первого равны соответственно 2 и 3, а второго — 12 и 5. Во сколько раз площадь боковой поверхности второго цилиндра больше площади боковой поверхности первого?
Читайте также: Главный тормозной цилиндр уаз 469 артикул
Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать
Задания с площадью цилиндра
Шар вписан в цилиндр. Площадь поверхности шара равна 111. Найдите площадь полной поверхности цилиндра.
Высота цилиндра равна диаметру шара, а радиус основания цилиндра равен радиусу шара (см. рис.).
Площадь основания цилиндра:
Площадь боковой поверхности цилиндра:
Площадь полной поверхности цилиндра:
Поскольку площадь поверхности шара дается формулой имеем:
Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности цилиндра равна Найдите площадь боковой поверхности конуса.
Заметим, что конус и цилиндр имеют общую высоту и равные радиусы основания. Площадь боковой поверхности цилиндра равна откуда, учитывая, что получаем: или
Образующая конуса его высота и радиус основания связаны соотношением откуда, учитывая, что получаем: или
Площадь боковой поверхности конуса равна следовательно:
Цилиндр и конус имеют общее основание, вершина конуса является центром другого основания цилиндра. Каждая образующая конуса наклонена к плоскости основания под углом 30°.
а) Докажите, что площади боковых поверхностей цилиндра и конуса равны
б) Найдите радиус сферы, касающейся боковых поверхностей цилиндра и конуса, а так
же одного из оснований цилиндра, если известно, что объем конуса равен
а) Пусть радиус основания цилиндра равен а высота Тогда тангенс угла наклона образующей есть откуда и образующая конуса равна Вычислим теперь площади боковой поверхности цилиндра и конуса. Это и что и требовалось доказать.
б) Рассмотрим сечение цилиндра и конуса осевой плоскость, проходящей через центр сферы. Все точки касания будут лежать в этой плоскости. В сечении получим окружность, вписанную в прямоугольный треугольник со сторонами поэтому ее радиус равен
C другой стороны, как мы знаем,
откуда поэтому искомый радиус равен 1.
Видео:РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДРСкачать
Задания с площадью цилиндра
Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите
Объем данной части цилиндра равен
Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите
Объем данной части цилиндра равен
Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите
Объем данной части цилиндра равен
Читайте также: Блок цилиндров isuzu 4hk1
Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите
Объем данной части цилиндра равен
Найдите объем V части цилиндра, изображенной на рисунке. В ответе
Объем данной части цилиндра равен
Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите
Объем данной части цилиндра равен
Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите
Объем данной части цилиндра равен
Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите
Объем данной части цилиндра равен
Если сначала найти объем целого цилиндра, то он равен 1/3 * ПИ * r^2 * H, где r=6, H=5, то есть объем цилиндра равен 60 пи, а потом разделить его на четыре, т.к. данный сектор занимает 1/4 части всего цилиндра, то получится 15. В чем дело, что не так?
Ошибка в формуле. Объём цилинлра равен произведению высоты на площадь основания.
Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите
Объем данной части цилиндра равен
Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите
Объем данной части цилиндра равен
Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите
Объем данной части цилиндра равен
Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите
Объем данной фигуры равен сумме объемов цилиндра с радиусом основания 2 и высотой 3 и половины цилиндра с тем же радиусом основания и высотой 1:
Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите
Объем данной фигуры равен сумме объемов цилиндра с радиусом основания 2 и высотой 3 и половины цилиндра с тем же радиусом основания и высотой 1:
Добрый день,в условии указано что первая высота равна 3, а вторая 1. Почему в решении написано 0,5H(2)?
Так учитывается половина цилиндра
Найдите объем части цилиндра, изображенной на рисунке. В ответе укажите
Объем данной фигуры равен разности объемов цилиндра с радиусом основания 5 и высотой 5 и цилиндра с той же высотой и радиусом основания 2:
💡 Видео
ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРАСкачать
60. Площадь поверхности цилиндраСкачать
11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Объем цилиндра. Практическая часть. 11 класс.Скачать
ЕГЭ. Математика. База . Задача 16.Площадь осевого сечения цилиндраСкачать
Задача на вычисление высоты цилиндраСкачать
Цилиндр, конус и шар в задании 2 | Математика ЕГЭ 2023 | УмскулСкачать
ЦИЛИНДР. КОНУС. ШАР. ЕГЭ. ЗАДАНИЕ 5.СТЕРЕОМЕТРИЯСкачать
Нахождение площади боковой поверхности цилиндраСкачать
Задача про ЦИЛИНДР / Как найти объем детали? / Профиль ЕГЭСкачать
Как находить площадь любой фигуры? Геометрия | МатематикаСкачать
№526. Площадь основания цилиндра относится к площади осевого сечения как √3π:4. Найдите:Скачать
ЕГЭ. Задача 8. Призма и цилиндрСкачать
Площадь боковой и полной поверхностей цилиндраСкачать
Задачи на цилиндр. Объем цилиндра - bezbotvyСкачать
#136. Задание 8: цилиндрСкачать
ЕГЭ по математике. Базовый уровень. Задание 16. Цилиндр. Площадь прямоугольника.Скачать