Зависимость объема цилиндра от его высоты

Авто помощник

Объем цилиндра, формулы и калькулятор для вычисления объема цилиндра и площади его поверхностей, а также необходимая теория о характеристиках цилиндра.

Содержание
  1. Объем правильного цилиндра через радиус и высоту цилиндра
  2. Формулы и калькулятор для вычисления объема цилиндра через площадь основания и высоту цилиндра
  3. Формулы и калькулятор для вычисления объема цилиндра через диаметр основания
  4. Объем цилиндрической полости
  5. Поверхности цилиндра
  6. Сечения цилиндра
  7. Что такое объем
  8. Формула объема цилиндра
  9. Объем прямого цилиндра
  10. Объем цилиндра через радиус основания и высоту цилиндра
  11. Объем цилиндра через площадь основания и высоту цилиндра
  12. Объем цилиндра через диаметр основания и высоту цилиндра
  13. Нахождение объема цилиндра: формула и задачи
  14. Формула вычисления объема цилиндра
  15. Через площадь основания и высоту
  16. Через радиус основания и высоту
  17. Через диаметр основания и высоту
  18. Примеры задач
  19. Как найти объем цилиндра: формула через диаметр и высоту
  20. Объем цилиндра
  21. Объем цилиндра формула (через радиус основания и высоту)
  22. Зная радиус r и высоту h
  23. Формула
  24. Пример
  25. Зная диаметр d и высоту h
  26. Формула
  27. Пример
  28. Формула вычисления объема цилиндра
  29. Введите радиус основания и высоту цилиндра
  30. Примеры задач
  31. Поэтапный расчет объема картонной коробки
  32. Подсчет объема коробки в литрах
  33. Объем цилиндрической полости
  34. Объем прямого цилиндра
  35. Объем цилиндра через площадь основания и высоту цилиндра
  36. Поверхности цилиндра
  37. Сечения цилиндра
  38. Как рассчитать объем цилиндра с помощью калькулятора

Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать

11 класс. Геометрия. Объем цилиндра. 14.04.2020

Объем правильного цилиндра через радиус и высоту цилиндра

Видео:Цилиндр - расчёт площади, объёма.Скачать

Цилиндр - расчёт площади, объёма.

Формулы и калькулятор для вычисления объема цилиндра через площадь основания и высоту цилиндра

Зависимость объема цилиндра от его высоты

Видео:ЕГЭ-2020: Изменение объёма цилиндраСкачать

ЕГЭ-2020: Изменение объёма цилиндра

Формулы и калькулятор для вычисления объема цилиндра через диаметр основания

Зависимость объема цилиндра от его высоты

Видео:11 класс. Геометрия. Объем цилиндраСкачать

11 класс. Геометрия. Объем цилиндра

Объем цилиндрической полости

Зависимость объема цилиндра от его высоты

Объем полости в виде цилиндра равен объему цилиндра, который извлечен из данной полости для ее образования. То есть для вычисления цилиндрической полости можно воспользоваться формулами и калькулятором для расчета простого правильного цилиндра в зависимости от известных исходных данных.

На картинке продемонстрирована цилиндрическая полость, образованная в теле путем извлечения из него цилиндра. Объем извлеченного цилиндра и объем образованной полости равны.

Нужно отметить один важный момент. Несмотря на равенство объемов извлеченного цилиндра и образованной полости, площади поверхностей данных объектов будут отличаться, так как у образованной цилиндрической полости отсутствует верхняя поверхность. То есть суммарная площадь поверхности образованной цилиндрической полости будет меньше суммарной площади извлеченного цилиндра на одну площадь основания цилиндра.

Правильный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра равен 90 градусов.

Неправильный или наклонный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра отличается от 90 градусов.

Рассмотрим правильный цилиндр.

Цилиндр – это тело, образованное вращением прямоугольника вокруг одной из его сторон. Тело цилиндра ограничено двумя кругами, называемыми основанием цилиндра и боковой цилиндрической поверхностью, которая в развертке представляет собой прямоугольник

Цилиндр можно так же описать как тело, состоящее из двух равных кругов, не лежащих в одной плоскости и параллельных между собой, и отрезков, соединяющих все точки одной окружности, с соответствующими точками другой окружности. Данные отрезки называются образующими цилиндра.

Радиус основания цилиндра, является радиусом цилиндра.

Ось цилиндра – это прямая, соединяющая центра оснований цилиндра.

Высота цилиндра – это перпендикуляр, опущенный от одного основания цилиндра к другому.

Видео:Объём цилиндраСкачать

Объём цилиндра

Поверхности цилиндра

Зависимость объема цилиндра от его высоты

Наружную поверхность цилиндра можно условно разделить на три отдельные поверхности: верхняя, нижняя и боковая.

Верхняя и нижняя поверхности цилиндра имеют форму круга и равны между собой.

Боковая поверхность цилиндра имеет форму прямоугольника. Чтобы это наглядно представить, возьмем боковую наружную поверхность цилиндра и мысленно сделаем вертикальный разрез по образующей цилиндра. Далее развернем поверхность на плоскость. В результате увидим, что боковая поверхность имеет форму прямоугольника (см. на картинке).

Видео:Изменение объема цилиндраСкачать

Изменение объема цилиндра

Сечения цилиндра

Зависимость объема цилиндра от его высоты

Зависимость объема цилиндра от его высоты

При сечении цилиндра плоскостью, проходящей через оба основания цилиндра под углом в 90 градусов, всегда получатся прямоугольная фигура .

Зависимость объема цилиндра от его высоты

При сечении цилиндра плоскостью, проходящей через оба основания цилиндра под углом отличным от 90 градусов, получатся фигура, похожая на прямоугольник , но две боковые стороны которого будут являться кривыми линиями.

Читайте также: Главный тормозной цилиндр газель 3302 газ

Зависимость объема цилиндра от его высоты

Если секущая поверхность проходит параллельно основаниям цилиндра, то сечением будет круг .

Зависимость объема цилиндра от его высоты

Если секущая поверхность проходит через боковую поверхность, но при этом не параллельна основанию цилиндра, то в сечении получается эллипс .

Зависимость объема цилиндра от его высоты

Если секущая поверхность проходит через одно основание цилиндра и боковую поверхность, то в сечение будет фигура в виде половины эллипса .

Видео:Егэ.11кл. Объём первого цилиндра равен 12 м³, у второго цилиндра высота в 3 раза больше,а основаниеСкачать

Егэ.11кл. Объём первого цилиндра равен 12 м³, у второго цилиндра высота в 3 раза больше,а основание

Что такое объем

Объем тела (геометрической фигуры) – это количественная характеристика, характеризующая количество пространства, занимаемого телом. Объем выражается в кубических единицах измерения, например: мм 3 , см 3 , мл 3 .

Формула вычисления объема цилиндра часто применяются при расчете массы различных цилиндров, например, прутков, заготовок и т.п. Для вычисления массы, необходимо вычисленный объем цилиндра умножить на плотность материала из которого цилиндр.

Так же, вычислить объём цилиндра иногда требуется для определения полости в виде цилиндра (цилиндрическая полость). В данном случае объём полости будет равен объёму цилиндра, который полностью занимает эту полость.

Объем и площадь других видов цилиндров рассмотрен в статьях:

Видео:ОБЪЕМ ЦИЛИНДРА #shorts #егэ #огэ #математика #профильныйегэСкачать

ОБЪЕМ ЦИЛИНДРА #shorts #егэ #огэ #математика #профильныйегэ

Формула объема цилиндра

Цилиндр – это геометрическое тело, которое имеет цилиндрическую поверхность, называемое еще как боковая поверхность цилиндра и имеет две поверхности, которые носят название оснований цилиндра. Круговым цилиндр называют, если у него в основании лежит круг.

Высота цилиндра — это отрезок, соединяющий две любые точки оснований но обязательно расположенный перпендикулярно к ним обоим.

Видео:11 класс, 32 урок, Объем цилиндраСкачать

11 класс, 32 урок, Объем цилиндра

Объем прямого цилиндра

Цилиндр — это геометрическое тело, которое сформировано вращением прямоугольника на оси, совпадающей с одним из его сторон. Слово «цилиндр» происходит от греческого слова «kylindros».

Объем цилиндра через радиус основания и высоту цилиндра

Объем цилиндра равен произведению квадрата радиуса основания, высоты цилиндра и числа пи (3.1415)

\[ \LARGE V = \pi \cdot R^ \cdot H \]

где:
V — объем цилиндра
π — число пи (3.1415)
R — радиус основания
H — высота цилиндра

Объем цилиндра через площадь основания и высоту цилиндра

Объем цилиндра равен произведению площади основания цилиндра на его высоту.

где:
V — объем цилиндра
H — высота цилиндра
S — площадь цилиндра

Объем цилиндра через диаметр основания и высоту цилиндра

Объем цилиндра равен произведению диаметра основания и числа пи (3.1415) делённое на четыре высоты цилиндра

где:
V — объем цилиндра
π — число пи (3.1415)
D — диаметр основания
H — высота цилиндра

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Нахождение объема цилиндра: формула и задачи

В данной публикации мы рассмотрим, как можно найти объем цилиндра и разберем примеры решения задач.

Видео:Объём жидкости в цилиндре: математика в реальной жизни | ЕГЭ 2023 по математике | Эйджей из ВебиумаСкачать

Объём жидкости в цилиндре: математика в реальной жизни | ЕГЭ 2023 по математике | Эйджей из Вебиума

Формула вычисления объема цилиндра

Через площадь основания и высоту

Объем (V) цилиндра равняется произведению его высоты и площади основания.

Зависимость объема цилиндра от его высоты

Через радиус основания и высоту

Как мы знаем, в качестве оснований цилиндра (равны между собой) выступает круг, площадь которого вычисляется так: S = π ⋅ R 2 . Следовательно, формулу для вычисления объема цилиндра можно представить в виде:

V = π ⋅ R 2 ⋅ H

Примечание: в расчетах значение числа π округляется до 3,14.

Через диаметр основания и высоту

Как нам известно, диаметр круга равняется двум его радиусам: d = 2R. А значит, вычислить объем цилиндра можно следующим образом:

Видео:Объем и площадь поверхности цилиндра (видео 44) | Подобие. Геометрия | МатематикаСкачать

Объем и площадь поверхности цилиндра (видео 44) | Подобие. Геометрия | Математика

Примеры задач

Задание 1
Найдите объем цилиндра, если дана площадь его основания – 78,5 см 2 , а также, высота – 10 см.

Решение:
Применим первую формулу, подставив в нее известные значения:
V = 78,5 см 2 ⋅ 10 см = 785 см 3 .

Задание 2
Высота цилиндра равна 6 см, а его диаметр – 8 см. Найдите объем фигуры.

Решение:
Воспользовавшись третьей формулой, в которой участвует диаметр, получаем:
V = 3,14 ⋅ (8/2 см) 2 ⋅ 6 см = 301,44 см 3 .

Видео:ЕГЭ математика 8#8🔴Скачать

ЕГЭ математика 8#8🔴

Как найти объем цилиндра: формула через диаметр и высоту

Видео:Задачи на цилиндр. Объем цилиндра - bezbotvyСкачать

Задачи на цилиндр. Объем цилиндра - bezbotvy

Объем цилиндра

Зависимость объема цилиндра от его высоты

Объем цилиндра равен произведению площади его основания на высоту.

Читайте также: Сплошной цилиндр катится без проскальзывания со скоростью

Видео:Объем цилиндра и площадь его поверхностиСкачать

Объем цилиндра и площадь его поверхности

Объем цилиндра формула (через радиус основания и высоту)

r — радиус основания цилиндра,

Если внимательно посмотреть на эту формулу, то можно заметить, что

— это формула площади круга, а в нашем случае — площадь основания. Поэтому формулу объема цилиндра можно записать через площадь основания и высоту:

Зная радиус r и высоту h

Чему равен объем цилиндра V если известны его радиус r и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 8 см, а его радиус r = 2 см, то:

V = 3.14156 ⋅ 2 2 ⋅ 8 = 3.14156 ⋅ 32 = 100.53 см 3

Зная диаметр d и высоту h

Чему равен объем цилиндра V если известны его диаметр d и высота h?

Формула

Пример

Если цилиндр имеет высоту h = 5 см, а его диаметр d = 1 см, то:

V = 3.14156 ⋅ ( 1 /2) 2 ⋅ 5 = 3.14156 ⋅ 1.25 ≈ 3.927 см 3

Видео:Объем цилиндра и площадь его поверхности.Скачать

Объем цилиндра и площадь его поверхности.

Формула вычисления объема цилиндра

1. Через площадь основания и высоту

Объем (V) цилиндра равняется произведению его высоты и площади основания.

Зависимость объема цилиндра от его высоты

2. Через радиус основания и высоту

Как мы знаем, в качестве оснований цилиндра (равны между собой) выступает круг, площадь которого вычисляется так: S = π ⋅ R 2 . Следовательно, формулу для вычисления объема цилиндра можно представить в виде:

V = π ⋅ R 2 ⋅ H

Примечание: в расчетах значение числа π округляется до 3,14.

3. Через диаметр основания и высоту

Как нам известно, диаметр круга равняется двум его радиусам: d = 2R. А значит, вычислить объем цилиндра можно следующим образом:

V = π ⋅ (d/2) 2 ⋅ H

Видео:Стереометрия, номер 38.1Скачать

Стереометрия, номер 38.1

Введите радиус основания и высоту цилиндра

Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.

Зависимость объема цилиндра от его высоты

, где R – радиус оснований, h – высота цилиндра

Видео:Объём цилиндраСкачать

Объём цилиндра

Примеры задач

Задание 1
Найдите объем цилиндра, если дана площадь его основания – 78,5 см 2 , а также, высота – 10 см.

Решение:
Применим первую формулу, подставив в нее известные значения:
V = 78,5 см 2 ⋅ 10 см = 785 см 3 .

Задание 2
Высота цилиндра равна 6 см, а его диаметр – 8 см. Найдите объем фигуры.

Решение:
Воспользовавшись третьей формулой, в которой участвует диаметр, получаем:
V = 3,14 ⋅ (8/2 см) 2 ⋅ 6 см = 301,44 см 3 .

Видео:Егэ Во сколько раз уменьшится объём конуса если его высоту уменьшить в 8 раз ,а радиус основания остСкачать

Егэ Во сколько раз уменьшится объём конуса если его высоту уменьшить в 8 раз ,а радиус основания ост

Поэтапный расчет объема картонной коробки

    Измерить длину а и ширину b, если дно коробки квадратное, то а=b; Измерить высоту h как расстояние от нижнего до верхнего клапана коробки.

Сначала нужно рассчитать внутренний объем коробки, необходимый для размещения груза. Габаритные размеры груза должны быть на 5–10 мм меньше, чем внутренние размеры гофроупаковки.

V=a*b*h
где a – длина основания (м), b – ширина основания (м),
h – высота коробки (м).

V=S*h
где S — площадь основания коробки, а h — ее высота.

Объем, занимаемый заготовкой (коробкой) (с учетом толщины стенок) рассчитывается для правильного размещения внутри транспортного средства или хранения на складе.
Формула для расчета занимаемого объема:

V=Площадь (S) * толщину листа

*как рассчитать площадь (S) картонной коробки — в этой статье

Тип:Профиль:Толщина (мм):
Трехслойный гофрокартонB3
Трехслойный гофрокартонC3,7
Трехслойный гофрокартонE1,6
Пятислойный гофрокартонBC7
Пятислойный гофрокартонBE4

Зависимость объема цилиндра от его высоты

Перемножив полученные значения, получим объем коробки в кубических метрах. Чтобы получить результат в литрах необходимо полученное значение в м 3 умножить на 1000.

Видео:Объем цилиндра.Скачать

Объем цилиндра.

Подсчет объема коробки в литрах

При транспортировке мелких или сыпучих товаров их также пакуют в ящики. Учитывая, что такие предметы и материалы занимают весь объем тары, нужно знать их количество в литрах. Если Вы интересуетесь, как посчитать объем короба в литрах, определяйте литраж следующим образом:

Читайте также: Заглушки блока цилиндров ваз 2110 8 клапанов комплект

находим кубатуру V=a*b*h =0,3*0,25*0,15=0,0112 м 3 ;

зная равенство: 1 м 3 = 1000 л, переводим полученное значение в литры: V=0,0112 *1000=1,2 л.

Объем цилиндрической полости

Объем полости в виде цилиндра равен объему цилиндра, который извлечен из данной полости для ее образования. То есть для вычисления цилиндрической полости можно воспользоваться формулами и калькулятором для расчета простого правильного цилиндра в зависимости от известных исходных данных.

На картинке продемонстрирована цилиндрическая полость, образованная в теле путем извлечения из него цилиндра. Объем извлеченного цилиндра и объем образованной полости равны.

Нужно отметить один важный момент. Несмотря на равенство объемов извлеченного цилиндра и образованной полости, площади поверхностей данных объектов будут отличаться, так как у образованной цилиндрической полости отсутствует верхняя поверхность. То есть суммарная площадь поверхности образованной цилиндрической полости будет меньше суммарной площади извлеченного цилиндра на одну площадь основания цилиндра.

Зависимость объема цилиндра от его высоты

Цилиндр может быть правильным или наклонным

Правильный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра равен 90 градусов.

Неправильный или наклонный цилиндр – это цилиндр, где угол между образующими боковой поверхности и основанием цилиндра отличается от 90 градусов.

Рассмотрим правильный цилиндр.

Цилиндр – это тело, образованное вращением прямоугольника вокруг одной из его сторон. Тело цилиндра ограничено двумя кругами, называемыми основанием цилиндра и боковой цилиндрической поверхностью, которая в развертке представляет собой прямоугольник

Цилиндр можно так же описать как тело, состоящее из двух равных кругов, не лежащих в одной плоскости и параллельных между собой, и отрезков, соединяющих все точки одной окружности, с соответствующими точками другой окружности. Данные отрезки называются образующими цилиндра.

Радиус основания цилиндра, является радиусом цилиндра.

Ось цилиндра – это прямая, соединяющая центра оснований цилиндра.

Высота цилиндра – это перпендикуляр, опущенный от одного основания цилиндра к другому.

Объем прямого цилиндра

Цилиндр – это геометрическое тело, которое сформировано вращением прямоугольника на оси, совпадающей с одним из его сторон. Слово «цилиндр» происходит от греческого слова «kylindros».

Объем цилиндра через площадь основания и высоту цилиндра

Объем цилиндра равен произведению площади основания цилиндра на его высоту.

где:
V – объем цилиндра
H – высота цилиндра
S – площадь цилиндра

Поверхности цилиндра

Наружную поверхность цилиндра можно условно разделить на три отдельные поверхности: верхняя, нижняя и боковая.

Верхняя и нижняя поверхности цилиндра имеют форму круга и равны между собой.

Боковая поверхность цилиндра имеет форму прямоугольника. Чтобы это наглядно представить, возьмем боковую наружную поверхность цилиндра и мысленно сделаем вертикальный разрез по образующей цилиндра. Далее развернем поверхность на плоскость. В результате увидим, что боковая поверхность имеет форму прямоугольника (см. на картинке).

Сечения цилиндра

Зависимость объема цилиндра от его высоты

Зависимость объема цилиндра от его высоты

При сечении цилиндра плоскостью, проходящей через оба основания цилиндра под углом в 90 градусов, всегда получатся прямоугольная фигура

Зависимость объема цилиндра от его высоты

При сечении цилиндра плоскостью, проходящей через оба основания цилиндра под углом отличным от 90 градусов, получатся фигура, похожая на прямоугольник , но две боковые стороны которого будут являться кривыми линиями.

Зависимость объема цилиндра от его высоты

Если секущая поверхность проходит параллельно основаниям цилиндра, то сечением будет круг

Зависимость объема цилиндра от его высоты

Если секущая поверхность проходит через боковую поверхность, но при этом не параллельна основанию цилиндра, то в сечении получается эллипс

Зависимость объема цилиндра от его высоты

Если секущая поверхность проходит через одно основание цилиндра и боковую поверхность, то в сечение будет фигура в виде половины эллипса

Как рассчитать объем цилиндра с помощью калькулятора

Калькулятор позволяет определить объем цилиндра по одному из 3 вариантов:

  1. площадь основания и высота цилиндра;
  2. радиус основания и высота цилиндра;
  3. диаметр основания и высота цилиндра.

Выберите соответствующий шаг и введите исходные данные в соответствующие поля.

Также важно указать единицы измерения по условиям задачи.

Расчеты будут выполнены автоматически и конвертированы в основные метрические физические величины объема.

Поделиться или сохранить к себе:
Технарь знаток