Зависимость потенциала от расстояния для цилиндра

Авто помощник

Рассмотрим несколько примеров вычисления разности потенциалов между точками поля, созданного некоторыми заряженными телами.

Разность потенциалов между точками поля, образованного двумя бесконечными заряженными плоскостями

Мы показали, что напряженность связана с потенциалом

где – напряженность электростатического поля между заряженными плоскостями, найденная в п. 2.5.2 с помощью теоремы Остроградского–Гаусса; σ = q/S– поверхностная плотность заряда.

Теперь, чтобы получить выражение для потенциала между плоскостями, проинтегрируем выражение (3.7.1):

Зависимость потенциала от расстояния для цилиндра

На рисунке 3.5 изображена графическая зависимость напряженности E и потенциала φ от расстояния между плоскостями.

Разность потенциалов между точками поля,образованного бесконечно длинной цилиндрической поверхностью

В п. 2.5 с помощью теоремы Остроградского-Гаусса мы показали, что, т.к. , то (см. рис. 3.6)

Т.к. то , отсюда найдем разность потенциалов в произвольных точках 1 и 2:

Зависимость потенциала от расстояния для цилиндра

На рисунке 3.6 изображена зависимость напряженности E и потенциала от r. (Здесь и далее E – изображена сплошной линией, а – пунктирной).

Видео:Лекция 2-2 Потенциал - примерыСкачать

Лекция 2-2  Потенциал  -  примеры

Разность потенциалов между обкладками цилиндрического конденсатора

В п. 2.5. мы нашли, что (рис. 3.7)

Отсюда так же, как и в предыдущем случае, разность потенциалов будет равна:

Таким образом, внутри меньшего цилиндра имеем , Е = 0, между обкладками потенциал уменьшается по логарифмическому закону, а вторая обкладка (вне цилиндров) экранирует электрическое поле и φ и Е равны нулю.

Зависимость потенциала от расстояния для цилиндра

На рисунке 3.7 изображена зависимость напряженности E и потенциала от r.

Разность потенциалов между точками поля, образованного заряженной сферой (пустотелой)

Напряженность поля сферы (рис. 3.8) определяется формулой: .

Зависимость потенциала от расстояния для цилиндра

Разность потенциалов внутри диэлектрического заряженного шара

Имеем диэлектрический шар (рис. 3.9), заряженный с объемной плотностью

В п. 2.5 с помощью теоремы Остроградского–Гаусса мы нашли, что внутри шара .

Зависимость потенциала от расстояния для цилиндра

Теперь найдем разность потенциалов внутри шара:

Видео:Урок 218. Напряженность электрического поляСкачать

Урок 218. Напряженность электрического поля

Отсюда находим потенциал шара:

Читайте также: Пластиковые цилиндры для упаковки

Из полученных соотношений можно сделать следующие выводы.

С помощью теоремы Гаусса сравнительно просто можно рассчитать Е и φ от различных заряженных поверхностей.

Напряженность поля в вакууме изменяется скачком при переходе через заряженную поверхность.

Потенциал поля – всегда непрерывная функция координат.

Зависимость потенциала от расстояния для цилиндра

Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах.

Поле бесконечной однородно заряженной плоскости

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).

Зависимость потенциала от расстояния для цилиндра
Рис. 2.11Рис. 2.12

Применим теорему Остроградского-Гаусса. Поток ФЕ через боковую часть поверхности цилиндра равен нулю, т.к . Дляоснования цилиндра

Видео:Урок 231. Свойства электрического потенциалаСкачать

Урок 231. Свойства электрического потенциала

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

Внутри поверхности заключен заряд . Следовательно, из теоремы Остроградского–Гаусса получим:

откуда видно, что напряженность поля плоскости S равна:

Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости

Поле двух равномерно заряженных плоскостей

Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13).

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей .

Вне плоскостей напряженность поля

Зависимость потенциала от расстояния для цилиндра

Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).

Читайте также: Цилиндр плоская или пространственная фигура

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин):

Механические силы, действующие между заряженными телами, называют пондермоторными.

Тогда сила притяжения между пластинами конденсатора:

Видео:Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.

где S – площадь обкладок конденсатора. Т.к. , то

Это формула для расчета пондермоторной силы.

Поле заряженного бесконечно длинного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью , где d q – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

Зависимость потенциала от расстояния для цилиндра

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров для боковой поверхности т.е. зависит от расстояния r.

Следовательно, поток вектора через рассматриваемую поверхность, равен

При на поверхности будет заряд По теореме Остроградского-Гаусса , отсюда

Если , т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

Зависимость потенциала от расстояния для цилиндра

Если уменьшать радиус цилиндра R (при ), то можно вблизи поверхности получить поле с очень большой напряженностью и, при , получить нить.

Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком

Внутри меньшего и вне большего цилиндров поле будет отсутствовать (рис. 2.16) .

Видео:Урок 235. Задачи на электрический потенциал - 3Скачать

Урок 235. Задачи на электрический потенциал - 3

Зависимость потенциала от расстояния для цилиндра

В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае:

Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).

Поле заряженного пустотелого шара

Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, – в любой точке проходит через центр шара. ,и силовые линии перпендикулярны поверхности в любой точке. Вообразим вокруг шара – сферу радиуса r (рис. 2.17).

Читайте также: Масса полого тонкостенного цилиндра

Если то внутрь воображаемой сферы попадет весь заряд q, распределенный по сфере, тогда

Внутри сферы, при поле будет равно нулю, т.к. там нет зарядов:

Зависимость потенциала от расстояния для цилиндра

Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы.

Поле объемного заряженного шара

Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула:

Но внутри шара при сферическая поверхность будет содержать в себе заряд, равный

где ρ – объемная плотность заряда, равная: ; – объем шара. Тогда по теореме Остроградского-Гаусса запишем:

Таким образом, внутри шара

📸 Видео

Урок 229. Работа электрического поля. Потенциал. Электрическое напряжениеСкачать

Урок 229. Работа электрического поля. Потенциал. Электрическое напряжение

Лекция 232. Потенциал электрического поляСкачать

Лекция 232. Потенциал электрического поля

Урок 224. Напряженность поля неточечных зарядовСкачать

Урок 224. Напряженность поля неточечных зарядов

Потенциал электрического поля. 10 класс.Скачать

Потенциал электрического поля. 10 класс.

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ суперпозиция полейСкачать

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ суперпозиция полей

Задача №2. Потенциал проводящей сферы.Скачать

Задача №2. Потенциал проводящей сферы.

Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.Скачать

Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.

Физика. Связь напряженности и потенциалаСкачать

Физика. Связь напряженности и потенциала

43. Применение теоремы ГауссаСкачать

43. Применение теоремы Гаусса

Потенциал электростатического поля, разность потенциалов | Физика 10 класс #50 | ИнфоурокСкачать

Потенциал электростатического поля, разность потенциалов | Физика 10 класс #50 | Инфоурок

Билет №02 "Теорема Гаусса"Скачать

Билет №02 "Теорема Гаусса"

Лекция 11 Потенциал электростатического поляСкачать

Лекция 11 Потенциал электростатического поля

Урок 233. Задачи на электрический потенциал - 1Скачать

Урок 233. Задачи на электрический потенциал - 1

1.55 кпиСкачать

1.55 кпи

Физика 10 класс (Урок№27 - Напряжённость и потенциал электростатического поля.Разность потенциалов.)Скачать

Физика 10 класс (Урок№27 - Напряжённость и потенциал электростатического поля.Разность потенциалов.)
Поделиться или сохранить к себе:
Технарь знаток