Найти чему равен объем цилиндра (V) можно зная (либо-либо):
- радиус r и высоту h цилиндра
- диаметр d и высоту h цилиндра
- площадь основания So и высоту h цилиндра
- площадь боковой поверхности Sb и высоту h цилиндра
Подставьте значения в соответствующие поля и получите результат.
- Зная радиус r и высоту h
- Формула
- Пример
- Зная диаметр d и высоту h
- Формула
- Пример
- Зная площадь основания So и высоту h
- Формула
- Пример
- Зная площадь боковой поверхности Sb и высоту h
- Формула
- Пример
- Диаметр и высота цилиндра
- Свойства
- Высота и диагональ цилиндра
- Свойства
- Радиус и высота цилиндра
- Свойства
- Объём стенки цилиндра
- Онлайн калькулятор
- Зная оба радиуса (диаметра)
- 🌟 Видео
Зная радиус r и высоту h
Чему равен объем цилиндра V если известны его радиус r и высота h?
Формула
Пример
Если цилиндр имеет высоту h = 8 см, а его радиус r = 2 см, то:
V = 3.14156 ⋅ 2 2 ⋅ 8 = 3.14156 ⋅ 32 = 100.53 см 3
Зная диаметр d и высоту h
Чему равен объем цилиндра V если известны его диаметр d и высота h?
Формула
Пример
Если цилиндр имеет высоту h = 5 см, а его диаметр d = 1 см, то:
V = 3.14156 ⋅ ( 1 /2) 2 ⋅ 5 = 3.14156 ⋅ 1.25 ≈ 3.927 см 3
Зная площадь основания So и высоту h
Чему равен объем цилиндра V если известны его площадь основания So и высота h?
Формула
Пример
Если цилиндр имеет высоту h = 10 см, а площадь его основания So = 5 см 2 , то:
Зная площадь боковой поверхности Sb и высоту h
Чему равен объем цилиндра V если известны его площадь боковой поверхности Sb и высота h?
Формула
Пример
Если цилиндр имеет высоту h = 5 см, а площадь его боковой поверхности Sb = 30 см 2 , то:
V = 30 2 / 4 ⋅ 3.14⋅ 5 = 900 /62.8 = 14.33 см 3
Видео:11 класс. Геометрия. Объем цилиндра. 14.04.2020Скачать
Диаметр и высота цилиндра
Видео:Цилиндр - расчёт площади, объёма.Скачать
Свойства
Через диаметр цилиндра можно рассчитать его радиус и периметр основания цилиндра. Радиус будет равен половине диаметра, а периметр – его произведению на число π. r=D/2 P=πD
Зная диаметр и высоту цилиндра, можно узнать площадь, объем, диагональ цилиндра и остальные параметры. Площадь боковой поверхности цилиндра представляет собой площадь прямоугольника, сторонами которого являются периметр основания цилиндра и его высота. Чтобы затем найти площадь полной поверхности цилиндра через диаметр и высоту, нужно к площади боковой поверхности добавить площадь верхнего и нижнего оснований, каждое из которых равно произведению числа π на четверть квадрата диаметра. S_(б.п.)=hP=πDh S_(п.п.)=S_(б.п.)+2S_(осн.)=πDh+(πD^2)/2=πD/2(2h+D) P=πD
Объем цилиндра представляет собой площадь его основания, умноженную на высоту. Чтобы найти объем цилиндра через диаметр и высоту, нужно умножить квадрат диаметра на четверть числа π и на высоту. V=(πD^2 h)/4 P=πD
Диагональ цилиндра находится из прямоугольного треугольника, в котором она является гипотенузой, а катеты представлены высотой и диаметром цилиндра. По теореме Пифагора диагональ цилиндра через высоту и диаметр цилиндра равна квадратному корню из суммы их квадратов. (рис. 25.1) d=√(h^2+D^2 ) P=πD
Чтобы найти радиус сферы вписанной в цилиндр, если его диаметр равен высоте, нужно разделить диаметр цилиндра либо высоту на два, так как радиус вписанной сферы равен радиусу цилиндра. (рис.25.2) r_1=h/2=D/2 P=πD
Радиус сферы, описанной вокруг цилиндра, при соблюдении тех же условий (равенство диаметра цилиндра и его высоты) равен половине диагонали цилиндра.(рис.25.3) R=d/2=√(h^2+D^2 )/2
Читайте также: Съемные цилиндры в двигателе
Видео:Объём цилиндраСкачать
Высота и диагональ цилиндра
Видео:Длина окружности. Математика 6 класс.Скачать
Свойства
Зная высоту и диагональ цилиндра, найти диаметр окружности в его основании не составляет труда. Для этого необходимо провести диагональ таким образом, чтобы получить с вышеуказанными параметрами прямоугольный треугольник, и далее вычислить неизвестное звено по теореме Пифагора. (рис.25.1) D=√(d^2-h^2 )
Зная диаметр, можно подставив полученное выражение вместо него в следующие формулы, найти радиус и периметр окружности в основании через диагональ и высоту цилиндра. r=D/2=√(d^2-h^2 )/2 P=πD=π√(d^2-h^2 )
Площадь боковой и полной поверхности вычисляются с непосредственным участием радиуса цилиндра или соответствующего ему выражения. Поэтому чтобы найти площади цилиндра через высоту и диагональ, нужно совершить следующие преобразования. S_(б.п.)=hP=2πrh=2π √(d^2-h^2 )/2 h=πh√(d^2-h^2 ) S_(п.п.)=S_(б.п.)+2S_(осн.)=πh√(d^2-h^2 )+π(d^2-h^2 )
Объем цилиндра вычисляется как произведение площади его основания на высоту. Чтобы найти объем цилиндра через высоту и диагональ цилиндра, нужно вместо площади основания подставить произведение числа π на разность квадратов диагонали и высоты. V=πh(d^2-h^2 )
Преследуя цель вычислить радиус вписанной или описанной окружности цилиндра через диагональ и высоту, необходимо помнить о том, что в цилиндр можно вписать окружность, только если радиус цилиндра равен его высоте. Поэтому радиус вписанной окружности будет равен половине высоты, а радиус описанной окружности – половине диагонали. (рис. 25.2,25.3) r_1=h/2 R=d/2
Видео:Объем цилиндраСкачать
Радиус и высота цилиндра
Видео:Видеоурок по математике "Цилиндр"Скачать
Свойства
Зная радиус цилиндра r, можно сразу найти его диаметр D и периметр окружности P, лежащей в его основании. Диаметр цилиндра является величиной в два раза большей радиуса по значению, а периметр окружности равен произведению диаметра на число π. D=2r P=2πr
Зная радиус и высоту цилиндра можно вычислить все необходимые параметры, такие как, например, площадь поверхности цилиндра или его объем, диагональ цилиндра и так далее. Площадь поверхности цилиндра может быть полной или только боковой, разница заключается в том, что для полной поверхности необходимо прибавить к боковой еще два основания. S_(б.п.)=hP=2πrh S_(п.п.)=S_(б.п.)+2S_(осн.)=2πrh+πr^2=πr(2h+r)
Объем цилиндра равен произведению его площади основания на высоту, то есть произведению числа π на высоту и квадрат радиуса. V=πr^2 h
Чтобы найти диагональ цилиндра, необходимо провести диаметр в основании таким образом, чтобы он соединял диагональ с высотой цилиндра, расположенной на его боковой поверхности. Тогда из образованного прямоугольного треугольника, можно вычислить диагональ цилиндра через радиус и высоту цилиндра по теореме Пифагора. (рис.25.1) d=√(D^2+h^2 )=√(4r^2+h^2 )
В цилиндр можно вписать сферу только тогда, когда диаметр его основания равен его высоте. То же самое касается и сферы описанной вокруг цилиндра. Радиус вписанной в цилиндр сферы равен радиусу окружности, лежащей в основании сферы, или половине высоты, а радиус сферы описанной около цилиндра равен половине его диагонали. (рис.25.2, 25.3) r_1=r=h/2 R=d/2=√(4r^2+h^2 )/2
Видео:Длина окружности. Площадь круга - математика 6 классСкачать
Объём стенки цилиндра
Видео:11 класс. Геометрия. Объем цилиндраСкачать
Онлайн калькулятор
Найти чему равен объём полого цилиндра (Vст) можно зная (либо-либо):
- Высоту цилиндра h, внешний радиус r1 и внутренний радиус r2
- Высоту цилиндра h, внешний диаметр d1 и внутренний диаметр d2
- Высоту цилиндра h, внешний радиус r1 и толщину стенки δ
- Высоту цилиндра h, внутренний радиус r2 и толщину стенки δ
- Высоту цилиндра h, внешний диаметр d1 и толщину стенки δ
- Высоту цилиндра h, внутренний диаметр d2 и толщину стенки δ
Зная оба радиуса (диаметра)
Чему равен объём стенки цилиндра Vст если:
Внешний =
Внутренний =
Высота цилиндра h =
Ответ: Vст =
🌟 Видео
Объем цилиндра.Скачать
ПЛОЩАДЬ ПОЛНОЙ ПОВЕРХНОСТИ ЦИЛИНДРАСкачать
Геометрия Задача про монаха Найти диаметр цилиндраСкачать
Длина окружности. Площадь круга. 6 класс.Скачать
11 класс, 32 урок, Объем цилиндраСкачать
Объем цилиндра. Практическая часть. 11 класс.Скачать
Объем цилиндра. Урок 13. Геометрия 11 классСкачать
Объем цилиндра | МатематикаСкачать
Объем цилиндра.Скачать
Объём цилиндраСкачать
Сколько в бочке литров? Посчитаем.Скачать
Геометрия Цилиндр описан около шара. Найдите объем шара, если известно, что объем цилиндра равен 60.Скачать