Расширение области применения винтовых компрессоров находится во взаимосвязи с решением вопроса экономичного регулирования. До последнего времени основными способами регулирования производительности были дросселирование на всасывании и байпасирование.
Байпасирование (перепуск сжатого газа через байпасный клапан на всасывание) — способ малоэкономичный по сравнению с другими применяемыми способами регулирования. Компрессор потребляет 100% мощности независимо от режима работы. Способ используется как наиболее простой в компрессорах сухого сжатия.
Дросселирование на всасывании широко применяется в маслозаполненных компрессорах. Этот способ основан на автоматическом перекрытии дроссельного клапана, расположенного на всасывании, при превышении давления нагнетания, При этом растет внутренняя степень сжатия компрессора, но из-за уменьшения массового расхода затрачиваемая мощность падает. Способ эффективен в диапазоне регулирования производительности 100—70%. При более глубоком регулировании потери мощности значительны (например, при нулевой производительности компрессор потребляет 65—70% от номинальной мощности).
Наиболее экономичен способ регулирования производительности изменением частоты вращения роторов.
Весьма просто регулировать производительность компрессора сухого сжатия изменением частоты вращения в случае турбопривода.
На рис. 6.6,а приведена зависимость производительности и потребляемой мощности компрессора в процентах от их номинальных величин при изменении частоты вращения, из которой видно, что в диапазоне изменения частоты вращения 60—100% производительность и потребляемая мощность изменяются пропорционально.
При создании холодильного винтового маслозаполненного компрессора разработан и внедрен высокоэкономичный золотниковый способ регулирования. Суть его состоит в отключении части объема полостей, участвующих в процессе сжатия, при помощи золотникового устройства (рис. 6.6,б).
Золотник 1 соединен штоком 2 с установленным в направляющем цилиндре 4 поршнем 3. К торцам поршня подведена сжимаемая среда соответственно из камер всасывания и нагнетания для создания усилия, действующего в направлении, обратном нагрузке на золотник.
Цилиндр подключен непосредственно к камере нагнетания, а поршень, шток и золотник имеют каналы для подвода среды из камеры всасывания в полость цилиндра, отделенную поршнем от камеры нагнетания.
Направляющий цилиндр 4 размещен в отдельном корпусе и выполнен съемным. Диаметр соединительного элемента штока меньше диаметра поршня, диаметр золотника может быть равен диаметру соединительного элемента, что позволяет демонтировать золотннк без разбора направляющего цилиндра.
Как правило, в маслозаполненных винтовых компрессорах для регулирования производительности и впрыска масла используется подвижный золотник. Недостаток состоит в том, что при движении золотника отверстия для впрыска перемещаются вдоль камер сжатия. При перемещении золотника в сторону нагнетания зона впрыска укорачивается, что увеличивает протечки газа и уменьшает эффективность сжатия. Уменьшается также количество впрыскиваемого масла, что, в свою очередь, ухудшает смазку винтов.
В тех случаях, когда не удается осуществить привод с переменной частотой вращения, производительность компрессоров сухого сжатия регулируется байпасированием или выпуском части газа в атмосферу (для воздушных компрессоров).
Установившийся режим работы системы «компрессор — сеть» возможен при равенстве давления нагнетания компрессора давлению со стороны сети.
Наиболее целесообразно использование винтового компрессора при работе в сети с постоянным расходом и давлением. При изменении расхода газа в сети поддержание постоянного давления нагнетания сводится к задаче согласования подачи компрессора с расходом сети.
В воздушных маслозаполненных (винтовых компрессорах) широкое распространение полнило регулирование производительности путем изменения эффективной рабочей длины роторов перемещением золотника (рис. 6.6,6). При этом обеспечивается почти пропорциональное изменение потребляемой мощности в процессе регулирования производительности (от 100 до 40%). При более глубоком регулировании производительности затрачиваемая мощность не снижается более чем на 45 % от номинальной, так как возвращаемая часть газа подогревается впрыскиваемым маслом и поверхностями роторов и корпуса и, в свою очередь, повышает начальную температуру газа на всасывании. Поэтому в тех случаях, когда компрессор в течение значительного времени должен работать при неполной нагрузке, применение такого способа регулирования производительности целесообразно, несмотря на некоторое усложнение конструкции компрессора.
В маслозаполненных компрессорах, где производительность регулируется перемещением вдоль винтов подвижного золотника, корпус компрессора изготовляется, как правило, из отливки. Выполнение большого количества каналов для впрыска масла или перемещения газа от золотника очень затруднительно в отливке — требуется особая герметизация корпуса, особенно для холодильных фреоновых компрессоров.
Повсеместный переход на выпуск маслозаполненных компрессоров с асимметричными профилями зубьев вызван не только экономичностью последних, но также необходимостью передачи крутящего момента из-за исключения шестерен связи.
Читайте также: Как засухарить клапана без рассухаривателя 16 клапанов ваз 2112
Видео:Как подобрать обратный клапан для компрессора - обратный клапан для компрессора - размеры на сайтеСкачать
Регуляторы компрессора
Главной задачей регулятора производительности является обеспечение уменьшения тепловой нагрузки на систему охлаждения и сохранение заданной температуры кипения хладагента. При повышении мощности компрессора выше заданного показателя, температура кипения и давление опустятся ниже необходимых значений. В то же время при снижении производительности компрессора будет наблюдаться повышение значений температуры кипения и давления.
С целью сохранения надлежащих условий эксплуатации компрессора необходимо тщательно следить за тем, чтобы он работал в рамках допустимых значений температур и давлений.
Видео:Легкий запуск компресора. Установи этот клапан и будешь удивленСкачать
Регулирование производительности
Известны следующие способы регулирования производительности компрессора:
- ступенчатый. Это простой и удобный способ регулирования. Метод ступенчатого регулирования основан на частичной разгрузке цилиндров компрессора (для винтового компрессора на открытии и закрытии всасывающих каналов, в многокомпрессорных системах – на включении и отключении нескольких компрессоров). При небольшой тепловой нагрузке на систему эффективность компрессора снижается незначительно. Ступенчатое регулирование производительности компрессора рекомендуют применять для систем оборудованных несколькими многоцилиндровыми поршневыми компрессорами;
- при помощи золотникового клапана. Данным способом производительность компрессора можно регулировать от 10 до 100% от начальной мощности. В это время КПД устройства во время частичной тепловой нагрузке заметно снижается. Под золотниковым клапаном понимают устройство, которое используют с целью регулирования мощности винтовых компрессоров. Он оборудован гидравлическим приводом и перепускает часть газа на линии всасывания мимо компрессора;
- изменение скорости вращения электродвигателя. Метод регулирования производительности компрессора можно использовать к различным типам компрессора. Скорость вращения меняется при помощи преобразователя частоты или посредством применения двухскоростного электродвигателя. Последний регулирует производительность компрессора, вращаясь с высокой скоростью. В режиме захолаживания тепловая нагрузка на систему наибольшая, а в режиме хранения – минимальная. При помощи преобразователя частоты скорость вращения электродвигателя изменяется в зависимости от тепловой нагрузки на систему;
- путем перепуска горячего газа. Данный способ регулирования производительности применяется к компрессорам постоянной производительности. С целью изменения производительности из линии нагнетания горячий газ направляется в линию низкого давления. В это время холодопроизводительность снижается, поскольку уменьшается подача жидкого хладагента в испаритель (в результате отдачи тепла в линию низкого давления).
Для ступенчатого регулирования производительности применяют регулятор ЕКС 331 (1). Он представляет собой четырехступенчатый контроллер, обладающий 4-мя выходами для реле. С его помощью и происходит нагрузка или разгрузка компрессора (а также поршней и электродвигателя), согласно установленным на линии всасывания датчикам AKS 33 (2) или AKS 32R (3). Данный регулятор с нейтральной зоной способен контролировать производительность установки с четырьмя компрессорами одинаковой мощности или двумя регулируемой мощности.
Видео:Обратный клапан компрессора. Можно ли поставить сантехнический клапан на компрессор.Скачать
Нейтральная зона регулятора
В компрессорах постоянной производительности с целью регулирования холодопроизводительности используют перепуск горячего газа. Его расход меняют при помощи вентиля ICS (2) и CVC.
Когда давление на линии всасывания опускается ниже заданного уровня, то пилотный вентиль CVC открывает вентиль ICS и повышает расход газа. Перед компрессором давление всасывания поддерживается на заданном уровне, а холодопроизводительность соответствует фактической тепловой нагрузке на систему.
Видео:Обратный клапан для компрессора. Самое простое решение! Что может компрессор из "Урала"Скачать
Технические характеристики пилотного вентиля ICS и CVC
Видео:2) Клапан облегчённого запуска / Подетально / Плохо запускается компрессор / Не запускаетсяСкачать
Регулирование температуры нагнетания
В то время, когда температура нагнетания становится больше заданной термостатом RT107 (5) величины, он подает питание на соленоидный клапан EVRA (2). Именно через него жидкий хладагент попадает в боковой штуцер винтового компрессора. Расход впрыскиваемой жидкости регулирует термочувствительный инжекторный клапан ТЕ-АТ (3) и не позволяет увеличиваться температуре нагнетания. При помощи электроприводного вентиля ICM (3) осуществляется электронное регулирование впрыска жидкости, а датчик температуры AKS 21 РТ 1000 (6) передает данные об измерениях температуры нагнетания в контроллер ЕКС 361 (5).
Как только температура нагнетания доходит до определенной величины, контроллер отправляет сигнал на привод ICAD, ограничивающий температуру нагнетания газа путем открытия электроприводного вентиля ICM.
Видео:Обратный клапан для компрессора из вентиляСкачать
Регулятор давления
Данная ситуация имеет несколько путей решения. В первом случае запуск компрессора выполняют с неполной нагрузкой, что достигается путем регулировки производительности компрессора. С этой целью производят отключение нескольких цилиндров компрессора. В результате часть газа на линии всасывания будет проходить мимо винтовых компрессоров при помощи золотниковых клапанов.
Второй способ заключается в регулировании давления в картере компрессора. Сохранить давление всасывания на заданном уровне можно при помощи регулирующего клапана. Он будет находиться в закрытом положении до тех пор, пока давление на линии всасывания не опустится ниже установленного уровня.
Читайте также: Ваз 2112 16 клапанов 2000 года
После оттаивания испарителя давление в картере во время запуска компрессора можно контролировать путем монтажа сервоприводного ICS (1) и пилотного CVC вентиля. Сервоприводный вентиль с пилотным управлением будет находиться в закрытом состоянии до тех пор, пока давление всасывания не станет ниже величины, заданной пилотом. Таким образом, высокое давление пара на линии всасывания, переходит в картер, гарантируя компрессору должную производительность.
Если в холодильном оборудовании давление всасывании более 17 бар, то пилотный вентиль CVC не используется. В этом случае в качестве регулятора давления выступает пилотный вентиль постоянного давления типа CVР. Как только давление всасывания достигает установленной отметки, вентиль CVР открывается, пар высокого давления проходит через сервопоршень вентиля ICS в сторону линии всасывания, после чего давление в нем снижается и вентиль закрывается. Благодаря этому давление всасывание не поднимается выше заданного уровня.
Через некоторое время после начала работы компрессор откачает значительную часть пара, и давление кипения опустится значительно ниже отметки, заданной вентилем CVР. Как только это случится, он закроется, а вентиль ICS начнет открываться. При стабильной работе системы вентиль ICS остается открытым. В то же время регуляторы REG (2) и (3) также будут пребывать в открытом положении.
Видео:Компрессор травит воздух. Как работает обратный клапан компрессораСкачать
Регулировка обратного течения хладагента
Для того чтобы хладагент не попадал в маслоотделитель во время остановки компрессора необходимо на выходе из него установить обратный клапан.
Запорный обратный клапан SCA (1) сочетает в себе функции обратного клапана, во время работы системы охлаждения и применятся в роли запорного вентиля. С его помощью можно также перекрывать во время обслуживания системы линию нагнетания. По сравнению с обычным запорным вентилем он имеет меньшее гидравлическое сопротивление и легко монтируется.
Выбирая запорный обратный клапан, также нужно учитывать производительность системы, а не диаметр трубопровода. Важными показателями являются условия работы при номинальной и неполной нагрузке на систему. Скорость потока в первом случае должна быть в пределах рекомендованных значений, а во втором — выше минимального уровня.
Видео:Облегченный запуск компрессораСкачать
3.8. Регулирование холодопроизводительности винтовых агрегатов
Холодопроизводительность винтовых агрегатов регулируют плавно или ступенчато перемещением золотника (регулирующих салазок) компрессора (рис. 36), а также с помощью пуска и остановки компрессора.
Перемещение золотника в отечественных компрессорах осуществляется вручную или электрическим приводом. В компрессорах производства ГДР «Кюльаутомат» золотник перемещается гидравлическим приводом.
В нижней части корпуса компрессора, в области сжатия пара, в цилиндрической расточке помещен золотник, предназначенный для регулирования холодопроизводительности компрессора. Форма золотника соответствует форме роторной части корпуса. Золотник от проворачивания предохраняет направляющая шпонка, позволяющая в то же время ему свободно перемещаться вдоль оси. На рис. 37 показан золотник с гидравлическим приводом компрессора типа S3-900.
При смещении в сторону секции всасывания золотник совместно с корпусом компрессора образует рабочую полость, в которой происходит сжатие пара. Перемещаясь в сторону секции нагнетания, золотник открывает доступ пара из рабочих полостей в полость всасывания. Этим достигается сокращение рабочей длины винтовых роторов и, следовательно, уменьшение холодопроизводительности компрессора.
В случае нахождения золотника в крайнем левом положении (рис. 37, а) образующая золотника (форма профиля золотника) повторяет форму расточки роторов. При этом холодопроизводительность компрессора максимальна.
При перемещении золотника вправо, в сторону секции нагнетания, освобождается пространство под винтовыми профилями роторов; это пространство соединяется с полостью всасывания компрессора (рис. 37,6). Это приводит к уменьшению холодопроизводительности компрессора. На участке, где отсутствует золотник (до сечения 1—1), зубья роторов частично входят во впадины парных роторов, и объем винтовых впадин уменьшается. Так как полости сжатия из-за отсутствия золотника соединены со всасывающей полостью, часть пара из парной полости уходит на всасывание компрессора. Сжатие пара компрессором начинается только после сечения 1—1. При дальнейшем перемещении золотника вправо, в сторону секции нагнетания, происходит соответствующее уменьшение холодопроизводительности компрессора. При достижении золотником сечения 2—2 пар будет занимать только незначительную часть объема парной полости. Холодопроизводительность компрессора при этом минимальная.
Во всех режимах компрессора мощность трения и энергозатраты на перекачивание масла остаются постоянными. Поэтому относительный расход электроэнергии на выработку холода при работе компрессора с неполной холодопроизводительностью увеличивается. Кроме того, максимальная эффективность винтового агрегата достигается при совпадении внутренней (Рн/Рвс) и внешней (Рк/Р0) степеней сжатия.
Читайте также: Клапан абсорбера опель омега
При уменьшении производительности компрессора за счет перемещения золотника в сторону секции нагнетания внутренняя степень сжатия уменьшается пропорционально падению холодопроизводительности компрессора, что делает работу компрессора энергетически неэффективной. Поэтому на энергонасыщенных предприятиях винтовые агрегаты эксплуатируют с полной холодопроизводительностью, используя в качестве ее регулирования изменение количества работающих агрегатов. В этих случаях надежен и удобен ручной привод золотника компрессора, который находит применение на части выпускаемых отечественной промышленностью винтовых компрессоров.
Автоматическое поддержание заданной температуры в охлаждаемом помещении с высокой точностью (±1°С) может быть осуществлено только при плавном регулировании холодопроизводительности компрессора. Для этого применяют агрегаты с компрессорами, имеющими электрический или гидравлический привод золотника. В последнем случае возможна организация безвахтенного обслуживания агрегата. Для ручного привода золотника применяется маховик, установленный в передней части компрессора типа 5ВХ-350-7-0(2). При вращении маховика по часовой стрелке он перемещается в сторону нагнетательного патрубка и устанавливается в положении минимальной холодопроизводительности компрессора, вращение маховика против часовой стрелки приводит к увеличению холодопроизводительности.
Компрессоры типа 5ВХ-350-7-1 (3) оборудуют устройством А80, состоящим из электродвигателя и червячного редуктора. С помощью электропривода возможно плавное регулирование холодопроизводительности. Перемещение золотника Производится включением устройства А80 на определенное время. Компрессоры типа S3-900 имеют гидравлический привод золотника. В агрегатах типа FMS3-900 устроена специальная система гидропривода золотника компрессора (рис. 38). Масляный насос гидросистемы работает непрерывно.
В винтовых агрегатах типа FMS3-900 последних выпусков отсутствует специальная гидравлическая система; для перемещения регулирующих салазок компрессора используется масляное давление насоса компрессора.
В одноступенчатых агрегатах и агрегатах высокого давления для управления золотником компрессора предусмотрено два соленоидных вентиля (см. рис. 28, поз. 12 и 10). Соленоидные вентили 13 и 14 в этих схемах отсутствуют.
Для уменьшения производительности компрессора открывается соленоидный вентиль 12, и масло от насоса подается через него и дроссельную шайбу 15 в левую полость цилиндра перестановочного устройства (см. рис. 27). Поршень перестановочного устройства, а следовательно, и золотник компрессора перемещаются в сторону нагнетательного патрубка. Из правой полости перестановочного устройства при этом вытесняется пар хладагента.
Для увеличения производительности компрессора открывается соленоидный вентиль 10 (см. рис. 28), и через соответствующую дроссельную шайбу 15 и соленоидный вентиль 10 масло из левой полости перестановочного устройства (см. рис. 27) уходит во всасывающий трубопровод, а поршень перестановочного устройства 7 (см. рис. 27) перемещается влево под действием пара, сжимаемого компрессором. Перемещение золотника компрессора влево приводит к увеличению производительности компрессора.
Для компрессоров низкого давления в двухступенчатых винтовых агрегатах применяется двухстороннее гидравлическое перемещение поршня перестановочного устройства, поскольку давление конца сжатия этого компрессора недостаточно для воздействия на поршень перестановочного устройства.
Для уменьшения производительности компрессора открываются соленоидные вентили 12 и 14 (см. рис. 28). Масло под давлением насоса подается через соленоидный вентиль 12 в левую полость цилиндра перестановочного устройства (см. рис. 27), а из правой полости через соленоидный вентиль 14 (см. рис. 28) уходит во всасывающий трубопровод компрессора. Поршень перестановочного устройства, а следовательно, и золотник компрессора перемещаются в сторону нагнетательного патрубка.
Для увеличения холодопроизводительности компрессора открываются соленоидные вентили 13 и 10, масло через соленоидный вентиль 14 нагнетается в правую полость цилиндра перестановочного устройства (см. рис. 27), а из левой полости масло через соленоидный вентиль 10 (см. рис. 28) уходит во всасывающий трубопровод компрессора. Поршень перестановочного устройства 7 (см. рис. 27), а следовательно, и золотник 4 компрессора перемещаются влево.
Положение золотника компрессора контролируется или потенциометром, или герметичным датчиком. Перемещение поршня перестановочного устройства 7 достигается вращением скрученного стержня 8, который в свою очередь поворачивает магнитодержатель с пятью постоянными магнитами. Через немагнитную уплотнительную прокладку магниты управляют герметичными контактами.
Сигнал от потенциометра или герметичного датчика передается на прибор, показывающий холодопроизводительность компрессора в данный момент в процентах.
В ходе эксплуатации холодильной установки задачей золотникового устройства является:
— пуск компрессора при минимальной производительности;
— ручное или автоматическое поддержание необходимой производительности компрессора с целью обеспечения заданной температуры охлаждаемого объекта.
В последнем случае команда на перемещение золотника поступает автоматически в зависимости от температуры потребителя холода или давления кипения хладагента. Для устойчивой работы винтового агрегата необходимо поддержание определенных параметров его работы в расчетных пределах температур.
📽️ Видео
Клапан разгрузки, клапан сброса избыточного давления компрессораСкачать
Модернизация (тюнинг) клапана спуска давления прессостата компрессораСкачать
всасовй клапан на винтовой компрессорСкачать
обратный клапан для компрессораСкачать
Устройство и принцип работы винтового компрессораСкачать
УПРАВЛЯЮЩИЙ КЛАПАН КОМПРЕССОРА КОНДИЦИОНЕРА: НЕ РАБОТАЕТ КОМПРЕССОР ? НЕ СПЕШИ ЕГО МЕНЯТЬ ! СМОТРИ..Скачать
Обратный клапан компрессора СО 7Б.Скачать
Замена обратного клапана на воздушном компрессоре/ замена масла на компрессореСкачать
Двигатель гудит и не прокручивает компрессор? Травит пресостат? Смотри обратный клапан.Скачать
Мембрана (клапан пластина, лепесток, лепестковый клапан) для компрессора. Обзор. размеры.Скачать
Обратный клапан компрессора. Краткий обзор.Скачать
Легкий пуск компрессора под давлением"Ремеза"установка клапана ,решение проблемы.Скачать