Как найти квадрат диагонали осевого сечения цилиндра

Как найти квадрат диагонали осевого сечения цилиндра

Авто помощник

Зная диаметр цилиндра, можно вычислить радиус цилиндра и периметр окружности цилиндра, которая представляет собой его основание. Радиус будет равен одной второй диаметра, а периметр окружности – произведению диаметра на число π. r=D/2 P=πD

Первое, что можно вычислить через диаметр и диагональ цилиндра – это его высота. Так как высота непосредственно связана со всеми остальными параметрами цилиндра, такими как площадь, объем и прочие, то она является необходимым звеном для геометрического калькулятора цилиндра. (рис.25.1) h=√(d^2-D^2 )

Площадь боковой поверхности цилиндра равна произведению высоты на длину окружности в основании цилиндра, таким образом, раскрывая эту формулу, получаем, что площадь боковой поверхности равна произведению числа π и диаметра на квадратный корень из разности квадратов диагонали и диаметра. S_(б.п.)=hP=πD√(d^2-D^2 )

Площадь полной поверхности цилиндра представлена площадью боковой поверхности в сумме с площадью двух оснований в виде окружностей. S_(п.п.)=S_(б.п.)+2S_(осн.)=πD(√(d^2-D^2 )+D)

Чтобы найти объем цилиндра через диаметр и диагональ нужно представить высоту цилиндра в виде квадратного корня разности из квадратов диагонали и диаметра, а затем умножить это на площадь основания, состоящую из числа π и четверти квадрата диаметра. V=(πD^2 h)/4=(πD^2 √(d^2-D^2 ))/4

Чтобы в цилиндр можно было вписать сферу, нужно чтобы диаметр цилиндра был равен его высоте, тогда сфера будет соприкасаться со всеми гранями цилиндра и ее радиус будет равен радиусу цилиндра, то есть половине его диаметра. (рис. 25.2) r_1=r=D/2

Чтобы вокруг цилиндра можно было описать сферу, нужно точно так же чтобы диаметр цилиндра совпадал с высотой, и радиус описанной сферы будет равен половине диагонали цилиндра. R=d/2

Видео:№522. Диагональ осевого сечения цилиндра равна 48 см. Угол между этой диагональю и образующейСкачать

№522. Диагональ осевого сечения цилиндра равна 48 см. Угол между этой диагональю и образующей

Осевое сечение цилиндра прямого и наклонного. Формулы для площади сечения и его диагоналей

Цилиндр — это симметричная пространственная фигура, свойства которой рассматривают в старших классах школы в курсе стереометрии. Для его описания используют такие линейные характеристики, как высота и радиус основания. В данной статье рассмотрим вопросы касательно того, что такое осевое сечение цилиндра, и как рассчитать его параметры через основные линейные характеристики фигуры.

Видео:№525. Площадь осевого сечения цилиндра равна 10 м2, а площадь основания — 5 м2.Скачать

№525. Площадь осевого сечения цилиндра равна 10 м2, а площадь основания — 5 м2.

Геометрическая фигура

Сначала дадим определение фигуре, о которой пойдет речь в статье. Цилиндр представляет собой поверхность, образованную параллельным перемещением отрезка фиксированной длины вдоль некоторой кривой. Главным условием этого перемещения является то, что отрезок плоскости кривой принадлежать не должен.

На рисунке ниже показан цилиндр, кривая (направляющая) которого является эллипсом.

Как найти квадрат диагонали осевого сечения цилиндра

Здесь отрезок длиной h является его образующей и высотой.

Видно, что цилиндр состоит из двух одинаковых оснований (эллипсы в данном случае), которые лежат в параллельных плоскостях, и боковой поверхности. Последней принадлежат все точки образующих линий.

Видео:№523. Осевое сечение цилиндра — квадрат, диагональ которого равна 20 см. Найдите: а) высотуСкачать

№523. Осевое сечение цилиндра — квадрат, диагональ которого равна 20 см. Найдите: а) высоту

Прямой и наклонный цилиндры

Перед тем как переходить к рассмотрению осевого сечения цилиндров, расскажем, какие типы этих фигур бывают.

Если образующая линия перпендикулярна основаниям фигуры, тогда говорят о прямом цилиндре. В противном случае цилиндр будет наклонным. Если соединить центральные точки двух оснований, то полученная прямая называется осью фигуры. Приведенный рисунок демонстрирует разницу между прямым и наклонным цилиндрами.

Читайте также: Порядок работы цилиндров оппозитного двигателя субару

Как найти квадрат диагонали осевого сечения цилиндра

Видно, что для прямой фигуры длина образующего отрезка совпадает со значением высоты h. Для наклонного цилиндра высота, то есть расстояние между основаниями, всегда меньше длины образующей линии.

Далее охарактеризуем осевые сечения обоих типов цилиндров. При этом будем рассматривать фигуры, основаниями которых является круг.

Видео:Видеоурок по математике "Цилиндр"Скачать

Видеоурок по математике "Цилиндр"

Осевое сечение прямого цилиндра

Осевым называется любое сечение цилиндра, которое содержит его ось. Это определение означает, что осевое сечение будет всегда параллельно образующей линии.

В цилиндре прямом ось проходит через центр круга и перпендикулярна его плоскости. Это означает, что рассматриваемое сечение круг будет пересекать по его диаметру. На рисунке показана половинка цилиндра, которая получилась в результате пересечения фигуры плоскостью, проходящей через ось.

Как найти квадрат диагонали осевого сечения цилиндра

Не сложно понять, что осевое сечение прямого круглого цилиндра представляет собой прямоугольник. Его сторонами являются диаметр d основания и высота h фигуры.

Запишем формулы для площади осевого сечения цилиндра и длины hd его диагонали:

Прямоугольник имеет две диагонали, но обе они равны друг другу. Если известен радиус основания, то не сложно переписать эти формулы через него, учитывая, что он в два раза меньше диаметра.

Видео:11 класс, 15 урок, Площадь поверхности цилиндраСкачать

11 класс, 15 урок, Площадь поверхности цилиндра

Осевое сечение наклонного цилиндра

Как найти квадрат диагонали осевого сечения цилиндра

Рисунок выше демонстрирует наклонный цилиндр, изготовленный из бумаги. Если выполнить его осевое сечение, то получится уже не прямоугольник, а параллелограмм. Его стороны — это известные величины. Одна из них, как и в случае сечения прямого цилиндра, равна диаметру d основания, другая же — длина образующего отрезка. Обозначим ее b.

Для однозначного определения параметров параллелограмма недостаточно знать его длины сторон. Необходим еще угол между ними. Предположим, что острый угол между направляющей и основанием равен α. Он же и будет углом между сторонами параллелограмма. Тогда формулу для площади осевого сечения наклонного цилиндра можно записать следующим образом:

Диагонали осевого сечения цилиндра наклонного рассчитать несколько сложнее. Параллелограмм имеет две диагонали разной длины. Приведем без вывода выражения, позволяющие рассчитывать диагонали параллелограмма по известным сторонам и острому углу между ними:

Здесь l1 и l2 — длины малой и большой диагоналей соответственно. Эти формулы можно получить самостоятельно, если рассмотреть каждую диагональ как вектор, введя прямоугольную систему координат на плоскости.

Видео:№526. Площадь основания цилиндра относится к площади осевого сечения как √3π:4. Найдите:Скачать

№526. Площадь основания цилиндра относится к площади осевого сечения как √3π:4. Найдите:

Задача с прямым цилиндром

Покажем, как использовать полученные знания для решения следующей задачи. Пусть дан круглый прямой цилиндр. Известно, что осевое сечение цилиндра — квадрат. Чему равна площадь этого сечения, если площадь поверхности всей фигуры составляет 100 см2?

Для вычисления искомой площади необходимо найти либо радиус, либо диаметр основания цилиндра. Для этого воспользуемся формулой для общей площади Sf фигуры:

Поскольку сечение осевое представляет собой квадрат, то это означает, что радиус r основания в два раза меньше высоты h. Учитывая это, можно переписать равенство выше в виде:

Теперь можно выразить радиус r, имеем:

Поскольку сторона квадратного сечения равна диаметру основания фигуры, то для вычисления его площади S будет справедлива следующая формула:

Мы видим, что искомая площадь однозначно определяется площадью поверхности цилиндра. Подставляя данные в равенство, приходим к ответу: S = 21,23 см2.

Видео:№531. Высота цилиндра равна 10 дм. Площадь сечения цилиндра плоскостью, параллельнойСкачать

№531. Высота цилиндра равна 10 дм. Площадь сечения цилиндра плоскостью, параллельной

Как найти квадрат диагонали осевого сечения цилиндра

Как найти квадрат диагонали осевого сечения цилиндра

Примечание. Это часть урока с задачами по геометрии (раздел стереометрия). Если Вам необходимо решить задачу по геометрии, которой здесь нет — пишите об этом в форуме. В задачах вместо символа «квадратный корень» применяется функция sqrt(), в которой sqrt — символ квадратного корня, а в скобках указано подкоренное выражение.

Задача.
Найдите площадь полной поверхности цилиндра, если диагональ его осевого сечения, равная 8см, составляет с образующей цилиндра угол величиной 30 градусов.

Поскольку AC = 8 см, а угол ACD = 30°, то
CD = AC cos 30°

Пояснение. Треугольник ACD — прямоугольный. Соответственно, CD / AC = cos ∠ACD по свойству тригонометрических функций в прямоугольном треугольнике. Значение cos 30 найдем из таблицы значений тригонометрических функций.

Аналогично,
AD = AC sin 30°
AD = 8 * 1/2 = 4

Откуда радиус основания цилиндра равен 4/2 = 2 см

Площадь основания цилиндра, соответственно, равна
S1 = πR 2 = 4π

Площадь боковой поверхности цилиндра равна площади его развертки — произведению длины окружности основания и высоты цилиндра. То есть:
S2 = 2πRh = 2π * 2 * 4√3 = 16π√3

Общая площадь поверхности цилиндра равна:
S1 + S2 = 4π + 16π√3

Видео:РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДРСкачать

РЕШЕНИЕ ЗАДАЧ НА ЦИЛИНДР

Как найти квадрат диагонали осевого сечения цилиндра

Как найти квадрат диагонали осевого сечения цилиндра

Видео:№521. Докажите, что осевое сечение цилиндра является прямоугольником, две противоположныеСкачать

№521. Докажите, что осевое сечение цилиндра является прямоугольником, две противоположные

Задача

Осевое сечение цилиндра — квадрат, диагональ которого равна 4√2.
Вычислить объем цилиндра.

Решение.
Поскольку диагональ сечения цилиндра — квадрат, то обозначим его сторону как a.
a 2 + a 2 = (4√2) 2
2a 2 = 32
a 2 = 16
a = 4

Объем цилиндра найдем по формуле:
V = πd 2 / 4 * h
откуда
V = π4 2 / 4 * 4
V = 16π

Ответ: Объем цилиндра равен 16π

Видео:Построение взаимно перпендикулярных осевых сечений цилиндраСкачать

Построение взаимно перпендикулярных осевых сечений цилиндра

Задача

Куб с ребром длиной а вписан в цилиндр. Найдите площадь осевого сечения цилиндра.

Решение.
Проведем плоскость через основание цилиндра.

Диагональ куба является одновременно диаметром цилиндра. Зная сторону куба, определяем длину диагонали AC квадрата ABCD как
CD 2 + AD 2 = AC 2
a 2 + a 2 = AC 2
2a 2 = AC
AC = a√2

Проведем плоскость через ось цилиндра по диагонали AC. Высота сечения равна длине ребра куба и по условиям задачи рана а, а ширина сечения равна a√2.
Таким образом, площадь сечения равна:

Видео:№544. Из квадрата, диагональ которого равна d, свернута боковая поверхность цилиндра.Скачать

№544. Из квадрата, диагональ которого равна d, свернута боковая поверхность цилиндра.

Задача

Диагональ осевого сечения цилиндра равна 12 см и образует с плоскостью нижнего основания угол 45 градусов. Найти обьём цилиндра.

Решение.
Поскольку основание осевого сечения образует с высотой цилиндра, принадлежащей сечению, прямой угол, то треугольник, который образован диагональю осевого сечения, высотой цилиндра и его диаметром — прямоугольный.

Исходя из этого, угол между диагональю и высотой также равен 45 градусов ( 180 — 90 — 45 ).

Таким образом, треугольник является равнобедренным, а, следовательно, высота цилиндра равна его диаметру. Применив теорему Пифагора, найдем их.

Теперь применим формулу объема цилиндра V = пd 2 / 4 h

Видео:Задание №522 — ГДЗ по геометрии 11 класс (Атанасян Л.С.)Скачать

Задание №522 — ГДЗ по геометрии 11 класс (Атанасян Л.С.)

Задача

Высота цилиндра 2м. Радиус основания 7м. В этот цилиндр наклонно вписан квадрат так, что все вершины его лежат на окружностях оснований. Найти сторону квадрата.

Висота циліндра 2м. Радіус основи 7м. В цей циліндр похило вписаний квадрат так, що всі вершини його лежать на окружностях основ. Знайти сторону квадрата.

Пусть d – диагональ квадрата. Тогда сторона квадрата а равна:

Позначимо d – діагональ квадрата. Тоді сторона квадрата а :

Видео:№538. Площадь боковой поверхности цилиндра равна 5. Найдите площадь осевогоСкачать

№538. Площадь боковой поверхности цилиндра равна 5. Найдите площадь осевого

Как найти квадрат диагонали осевого сечения цилиндра

Как найти квадрат диагонали осевого сечения цилиндра

Видео:Радиус основания цилиндра равен 26, а его образующая равна 9... Найдите площадь сечения.Скачать

Радиус основания цилиндра равен 26, а его образующая равна 9... Найдите площадь сечения.

Задача

Осевое сечение цилиндра — квадрат, диагональ которого равна 4√2.
Вычислить объем цилиндра.

Решение.
Поскольку диагональ сечения цилиндра — квадрат, то обозначим его сторону как a.
a 2 + a 2 = (4√2) 2
2a 2 = 32
a 2 = 16
a = 4

Объем цилиндра найдем по формуле:
V = πd 2 / 4 * h
откуда
V = π4 2 / 4 * 4
V = 16π

Ответ: Объем цилиндра равен 16π

Видео:17 задание из ОГЭ. Найти диагональ квадратаСкачать

17 задание из ОГЭ. Найти диагональ квадрата

Задача

Куб с ребром длиной а вписан в цилиндр. Найдите площадь осевого сечения цилиндра.

Решение.
Проведем плоскость через основание цилиндра.

Диагональ куба является одновременно диаметром цилиндра. Зная сторону куба, определяем длину диагонали AC квадрата ABCD как
CD 2 + AD 2 = AC 2
a 2 + a 2 = AC 2
2a 2 = AC
AC = a√2

Проведем плоскость через ось цилиндра по диагонали AC. Высота сечения равна длине ребра куба и по условиям задачи рана а, а ширина сечения равна a√2.
Таким образом, площадь сечения равна:

Видео:№543. Угол между диагоналями развертки боковой поверхности цилиндра равен φ, диагональ равна d.Скачать

№543. Угол между диагоналями развертки боковой поверхности цилиндра равен φ, диагональ равна d.

Задача

Диагональ осевого сечения цилиндра равна 12 см и образует с плоскостью нижнего основания угол 45 градусов. Найти обьём цилиндра.

Решение.
Поскольку основание осевого сечения образует с высотой цилиндра, принадлежащей сечению, прямой угол, то треугольник, который образован диагональю осевого сечения, высотой цилиндра и его диаметром — прямоугольный.

Исходя из этого, угол между диагональю и высотой также равен 45 градусов ( 180 — 90 — 45 ).

Таким образом, треугольник является равнобедренным, а, следовательно, высота цилиндра равна его диаметру. Применив теорему Пифагора, найдем их.

Теперь применим формулу объема цилиндра V = пd 2 / 4 h

Видео:№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длинеСкачать

№537. Диаметр основания цилиндра равен 1 м, высота цилиндра равна длине

Задача

Высота цилиндра 2м. Радиус основания 7м. В этот цилиндр наклонно вписан квадрат так, что все вершины его лежат на окружностях оснований. Найти сторону квадрата.

Висота циліндра 2м. Радіус основи 7м. В цей циліндр похило вписаний квадрат так, що всі вершини його лежать на окружностях основ. Знайти сторону квадрата.

Пусть d – диагональ квадрата. Тогда сторона квадрата а равна:

Позначимо d – діагональ квадрата. Тоді сторона квадрата а :

📽️ Видео

Найти диагональ квадратаСкачать

Найти диагональ квадрата
Поделиться или сохранить к себе:
Технарь знаток